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THE SUBREGULAR HYPOTHESIS

Subregular Phonology seeks to resolve the tension between theories of
phonology that are sufficiently expressive to account for the cross-linguistic
variation in phonological patterning and ones that are sufficiently constrained
so that grammars can be learned from examples.

For processes these include the input and output strictly local maps and
tier-based versions thereof.1

Why does it matter?

1Chandlee and Heinz (2018); Burness et al. (2021)
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THE SUBREGULAR HYPOTHESIS

Subregular Phonology argues that most phonological patterns fall within a
subregion of regular languages. Multiple classes within this region have been
identified1, for example:

Regular

Tier ISL (T-ISL)
e.g. vowel harmony in Turkish

(Kaun, 1995)

Input Strictly Local
(ISL)

e.g. final devoicing in Polish
(Rubach, 1984)

Tier OSL (T-OSL)
e.g. parasitic rounding harmony in

Kachin Khakass
(Korn, 1969)

Output Strictly Local
(OSL)

e.g. progressive nasal spreading in
Johore Malay
(Onn, 1980)

Why does it matter?

1Heinz (2018)
2
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WHY THE SUBREGULAR HYPOTHESIS MATTERS

1 Expressivity:
Captures both local and non-local phonological patterns2

2 Provable learnability results:
Subregular classes are mathematically well-defined, which allows for
efficient algorithms that effectively generalize the observed patterns 3

3 Computationally tractable:
Many patterns can be represented with subsequential functions4

instantiated by deterministic finite state transducers (DFTs), making
them suitable for various language technology applications

2Heinz (2010); Jardine (2016); Heinz (2018); McMullin and Hansson (2019)
3Heinz and Rogers (2013); Chandlee (2014); Chandlee et al. (2015a); Jardine and Heinz (2016)
4Sakarovitch (2009); Heinz and Lai (2013); Chandlee et al. (2014), Chandlee (2017); Chandlee and Heinz

(2018)
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THIS WORK

Over the past two decades, theoretical work in subregular phonology has led
to the development of various learning algorithms that can successfully
identify morphophonological patterns in the limit, given a characteristic
sample.5 Here I focus on those that fall within the ISL class.
● ISLFLA: O(n2

)

● SOSFIA: O(n)

! Practical Limitation: large amounts of training data.

For example:
● a characteristic sample that guarantees success in learning vowel

nasalization in English consists of approximately 18,278 UR-SR pairs.
(considering 26 out of 44 phonemes)!

5Oncina et al. (1993); Oncina and Varó (1996); Chandlee et al. (2015b), Burness and McMullin (2019);
Chandlee et al. (2014); Jardine et al. (2014)

4
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A SOLUTION PROPOSAL

In this talk I show:
● how to switch from segment-based to feature-based representations to

significantly reduce the amount of data required for learning.
● why the directionality of string processing (left-to-right vs. right-to-left)

also plays a crucial role in data efficiency.
● how learning k-values for individual features can help reduce data size.

6
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ROADMAP

1 k-ISL functions (Chandlee, 2014):
▸ definition and representation
▸ training data requirement that guarantees success –> why so large?

2 The role of features in learning phonological functions
3 Right-to-left vs. left-to-right processing
4 Learning k value for individual features
5 Case studies:

▸ vowel nasalization in English (6,157→ 44)
▸ vowel shortening in Yawelmani (16,583→ 164)
▸ @-epenthesis in Chukchi (17,181→ 2,331)
▸ opaque interaction of final devoicing and o-raising in Polish (16,583→

8,211)
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k-ISL FUNCTIONS AND k-ISL TRANSDUCERS

k-ISL functions can be instantiated with a deterministic finite-state
transducer (DFT), whose states and transitions are organized in such a way
that the current state of the machine is always determined by the previous
k − 1 symbols on the input.

Crucially, every k-ISL DFTs has the same structure.
● vowel nasalization in English (VN → ṼN): k = 2
● final devoicing in Polish (D⋉ → T⋉): k = 2

8
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VOWEL NASALIZATION AS A 2-ISL PROCESS

Σ = {a,m, t}
∆ = Σ ∪ {ã}

a

m

t

m ∶ m

t ∶ t

a ∶ a

a ∶ λ
m ∶ ãm

t ∶ at

t ∶ t

m ∶ m

a ∶ λ
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HOW DO WE LEARN SUCH FUNCTIONS?
SOSFIA

Given a characteristic sample of input-output pairs and an output empty
DFT for the relevant class, SOSFIA is guaranteed to calculate the
right outputs, for every transition (i.e. learn the function).

a

m

t

m ∶ ◻

t ∶ ◻

a ∶ ◻

a ∶ ◻
m ∶ ◻

t ∶ ◻

t ∶ ◻

m ∶ ◻

a ∶ ◻

... ...
/kæm/ → [kæ̃m]
/kkm/ → [kkm]
/mæm/ → [mæ̃m]
/mæt/ → [mæt]

... ...
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DATA REQUIREMENTS FOR SOSFIA
The size of k-ISL DFT depends directly on the window size k and the size of
the input alphabet Σ.

The state space for such machines can be expresses as ∣Q∣ = ∣Σ∣k−1.

Because SOSFIA needs to see strings that correspond to paths for every
transition, the characteristic sample S that guarantees success will be,
roughly speaking, proportional to ∣Q∣. Let’s consider some numbers:

∣Σ∣ ∣Q∣ ∣S∣

k = 2
4 4 84

10 10 1,110
50 50 127,550

k = 3
4 20 1,365

10 110 111,100
50 2550 318,877,550

11
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EXAMPLE
Transition: q = (current_state, input,output,next_state)
f1: k=2, V → Ṽ M
f2: k=3, V → Ṽ MM

Transition: Required data:

f1 (⋉, a, λ, a) {aa–aa, am–ãm, at–at}
(a, a, a, a) {aaa–aaa, aat–aat, aam–aãm}
(a, m, ãm, m) {ama–ãma, amt–ãmt, amm–ãmm}
(a, ⋊, a, ⋊) {a–a}
... ...

f2 (a, a, a, aa) {aaa–aaa, aam–aãm, aaaa-aaaa, aaam–aaãm, ... }
(aa, m, ãm, am) {aama–aãma, aammm–aãmmm, aammt–aãmmt, ...}
(am, t, t, mt) {amta–ãmta, amtaa–ãmtaa, amtat–ãmtat ...}
(mt, ⋊, λ, ⋊) {mt–mt}
... ...

12
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SOME ASSUMPTIONS AND OBSERVATIONS

● If no data available for a transition, the output is assumed to be faithful to
the input.
● For non-identical transitions, the learner has to be exposed to very

particular strings.
▸ The more non-identical transitions, the more data required.

● The structure of a k-ISL DFT also directly affects the data size:
▸ The bigger the k the bigger the k-ISL DFT.
▸ The bigger the alphabet the bigger the k-ISL DFT.
▸ The bigger the k-ISL DFT, the more data the learner needs.

The goal is then to:

I. Reduce the machine size
II. Reduce the amount of non-identical transitions

13
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SOME ASSUMPTIONS AND OBSERVATIONS

● If no data available for a transition, the output is assumed to be faithful to
the input.
● For non-identical transitions, the learner has to be exposed to very

particular strings.
▸ The more non-identical transitions, the more data required.

● The structure of a k-ISL DFT also directly affects the data size:
▸ The bigger the k the bigger the k-ISL DFT.
▸ The bigger the alphabet the bigger the k-ISL DFT.
▸ The bigger the k-ISL DFT, the more data the learner needs.

The goal is then to:

I. Reduce the machine size → FEATURES + k-value
II. Reduce the non-identical transitions → DIRECTIONALITY
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THE MAIN IDEA

Decompose the learning problem by generalizing over features.
● A learner predicts next feature values, as opposed to next symbol.

Let F be a finite set of features with binary or ternary values. If f ∈ F, ϕf is a
homomorphism from Σ to the set {+,−,0}.
● ϕ[cor](mat) = [ − 0 + ]
● ϕ[cons](mat) = [ + − + ]

If Φ is an ordered set of features, then Φ is a pointwise product of its
homomorphisms.
● Φ[ cor

cons ](mat) = [ − 0 ++ − + ]

Finally, if S is a sample of input/output pairs composed of segments, S(F,f) is
sample for feature f .
● S(F,f) = {(ΦF(x), Φf (y)) ∣(x, y) ∈ S}

15
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FACTORING BY FEATURE (FXF)

Given a characteristic sample S, for each f ∈ F:

STEP I. Project S([f ],f).
STEP II. Check if S([f ],f) is functional.

A. If yes, given a τ◻, extract a k-ISL DFTf and calculate the outputs with a
learner (e.g. SOSFIA)

B. If not, pick another f ′ ∈ F and project S([f ,f ′],f).

Repeat Step II until a functional sample is obtained.

16
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AN EXAMPLE FROM ENGLISH

k = 2
F = {cons, nasal, cor, lat,...}

a

m

t

m ∶ ◻

t ∶ ◻

a ∶ ◻

a ∶ ◻
m ∶ ◻

t ∶ ◻

t ∶ ◻

m ∶ ◻

a ∶ ◻

... ...
/kæm/ → [kæ̃m]
/kkm/ → [kkm]
/mæn/ → [mæ̃m]
/mæt/ → [mæt]

... ...
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FEATURE CONSONANTAL

k = 2
f =[consonantal]

... ...
/ +−+ / → [ +−+ ]
/ +++ / → [ +++ ]
/ +−− / → [ +−− ]
/ −−− / → [ −−− ]

... ...

18
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FEATURE CONSONANTAL

k = 2
f =[consonantal]

... ...
/ +−+ / → [ +−+ ]
/ +++ / → [ +++ ]
/ +−− / → [ +−− ]
/ −−− / → [ −−− ]

... ...

check_if_functional

19
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FEATURE CONSONANTAL

k = 2
f =[consonantal]

... ...
/ +−+ / → [ +−+ ]
/ +++ / → [ +++ ]
/ +−− / → [ +−− ]
/ −−− / → [ −−− ]

... ...

check_if_functional True

20



INTRODUCTION k−ISL FUNCTIONS FXF DIRECTIONALITY LEARNING k CASE STUDIES REFERENCES

FEATURE CONSONANTAL

k = 2
f =[consonantal]

... ...
/ +−+ / → [ +−+ ]
/ +++ / → [ +++ ]
/ +−− / → [ +−− ]
/ −−− / → [ −−− ]

... ...

+ −

+:◻ -:◻

+:◻

-:◻

21
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SOSFIA FXF’S OUTPUT FOR [CONSONANTAL]

+ −

+:+ -:-

+:+

-:-

22
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FEATURE NASAL

k = 2
f =[nasal]

... ...
/ −−+ / → [ −++ ]
/ −−+ / → [ −−+ ]
/ +−+ / → [ +++ ]
/ +−+ / → [ +−+ ]

... ...
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FEATURE NASAL

k = 2
f =[nasal]

... ...
/ −−+ / → [ −++ ]
/ −−+ / → [ −−+ ]
/ +−+ / → [ +++ ]
/ +−+ / → [ +−+ ]

... ...

check_if_functional
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FEATURE NASAL

k = 2
f =[nasal]

... ...
/ −−+ / → [ −++ ]
/ −−+ / → [ −−+ ]
/ +−+ / → [ +++ ]
/ +−+ / → [ +−+ ]

... ...

check_if_functional False
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FEATURES NASAL AND CONSONANTAL

k = 2
f , f ′ = [nasal, consonantal]

... ...

/ [ −+ ] [ −− ] [ ++ ] / → [ −++ ]

/ [ −+ ] [ −+ ] [ ++ ] / → [ −−+ ]

/ [ ++ ] [ −− ] [ ++ ] / → [ +++ ]

/ [ ++ ] [ −− ] [ −+ ] / → [ −−+ ]

... ...
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FEATURES NASAL AND CONSONANTAL

k = 2
f , f ′ = [nasal, consonantal]

... ...

/ [ −+ ] [ −− ] [ ++ ] / → [ −++ ]

/ [ −+ ] [ −+ ] [ ++ ] / → [ −−+ ]

/ [ ++ ] [ −− ] [ ++ ] / → [ +++ ]

/ [ ++ ] [ −− ] [ −+ ] / → [ −−+ ]

... ...
check_if_functional
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FEATURES NASAL AND CONSONANTAL

k = 2
f , f ′ = [nasal, consonantal]

... ...

/ [ −+ ] [ −− ] [ ++ ] / → [ −++ ]

/ [ −+ ] [ −+ ] [ ++ ] / → [ −−+ ]

/ [ ++ ] [ −− ] [ ++ ] / → [ +++ ]

/ [ ++ ] [ −− ] [ −+ ] / → [ +−− ]

... ...
check_if_functional True

28



INTRODUCTION k−ISL FUNCTIONS FXF DIRECTIONALITY LEARNING k CASE STUDIES REFERENCES

OUTPUT EMPTY DFT
[

nasal
cons ]

[
++ ]

[
−− ]

[
−+ ]

[++ ]: ◻

[−−]: ◻

[−+]: ◻

[−−]: ◻

[−+]: ◻

[++]: ◻

[−+]: ◻

[++]: ◻

[−−]: ◻

29
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SOSFIA’S OUTPUT FOR [ nasal
cons ]

[
++ ]

[
−− ]

[
−+ ]

[++ ]: +

[−− ]: -

[−+ ]: -

[−− ]: λ

[−+ ]: -

[++ ]: ++

[−+ ]: –

[++ ]: +

[−− ]: λ

30
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DIRECTIONALITY AND k-ISL FUNCTIONS

Whether a string is processed from left-to-right or right-to-left does not affect
the structure of the machine (Chandlee, 2014).

left-to-right right-to-left

[
++ ]

[
−− ]

[
−+ ]

[ ++ ]: +

[ −− ]: -

[ −+ ]: -

[ −− ]: λ
[ −+ ]: -

[ ++ ]: ++

[ −+ ]: --

[ ++ ]: +

[ −− ]: λ

[
++ ]

[
−− ]

[
−+ ]

[ ++ ]: +

[ −− ]: -

[ −+ ]: -

[ −− ]: +

[ −+ ]: -

[ ++ ]: +

[ −+ ]: -

[ ++ ]: +

[ −− ]: -
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DIRECTIONALITY AND k-ISL FUNCTIONS

The comparison from before showed us that changing the direction of the
string affects only the outputs: only the transitions leaving nasal consonant
state ([ ++ ]) will be different from the inputs.

Essentially, changing the direction can reduce the number of non-identical
transitions and thus reduce the data needed.

32
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WHICH DIRECTION TO GO?

Changing direction can be achieved by simply reversing the data; the structure
of the machine remains unchanged.

But how to know which direction to take?

● flip a coin
● study the data

Given the data, consider only the unfaithful input-output pairs and
calculate the longest common prefix (lcp) for all substrings starting
from the edge ⋊.
● Change directionality if for any substring ⋊σ+, σ ∈ Σ lcp = λ

33
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HOW CAN k-VALUE BE LEARNED?

As many phonological processes are feature-filling or feature-changing, there
often exists a subset of features that do not undergo any changes.

This observation allows us for a possibility to adjust the memory window, k,
for each feature individually.

As a result, functions for the faithful features can be represented and learned
from one-state machines.

34
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AN EXAMPLE FROM ENGLISH

f = [voice] f = [coronal]

⋊ X ⋉
⋊: λ

+: +
−: −

⋉: λ
⋊ X ⋉

⋊: λ

+: +
−: −
0: 0

⋉: λ

Regardless of the number of feature values, the size of 1-ISL machine will
remain the same.

35



INTRODUCTION k−ISL FUNCTIONS FXF DIRECTIONALITY LEARNING k CASE STUDIES REFERENCES

AN EXAMPLE FROM ENGLISH

f = [voice] f = [coronal]

⋊ X ⋉
⋊: λ

+: +
−: −

⋉: λ
⋊ X ⋉

⋊: λ

+: +
−: −
0: 0

⋉: λ

Regardless of the number of feature values, the size of 1-ISL machine will
remain the same.

35



INTRODUCTION k−ISL FUNCTIONS FXF DIRECTIONALITY LEARNING k CASE STUDIES REFERENCES

PUTTING EVERYTHING TOGETHER

The notions of features, locality, and directionality create multiple
possibilities.

The goal of a learner then is to start with the simplest assumption, i.e. a
feature can be learned from itself with no memory stored (k = 1). If
unsuccessful, the learner has three options:

1 add another feature to the input
2 increase k

3 reverse the direction

Soon coming 4th dimension: tiers
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TARGET k-ISL FUNCTIONS

● Vowel Nasalization in English (2-ISL; 22 features)
[ - cons ] Ð→ [ + nasal ] / [

+ cons
- nasal ]

● Vowel Shortening in Yawelmani (3-ISL; 22 features)
[ - cons ] Ð→ [ - long ] / [ + cons ][ + cons ]

● @-epenthesis in Chukchi (3-ISL; 22 features)
øÐ→ @ / [ + cons ] [ + cons ]⋉

● Final Devoicing and o-raising in Polish (3-ISL; 17 features)
[ - son ] Ð→ [ - voice ] / ⋉

[

- cons
+ back
- low
] Ð→ [ + high ] / [

+ cons
+ voice
- nasal

]⋉

37



INTRODUCTION k−ISL FUNCTIONS FXF DIRECTIONALITY LEARNING k CASE STUDIES REFERENCES

ALPHABET AND CHARACTERISTIC SAMPLE

● 2-ISL function:
▸ ∣Σ∣ = 26
▸ ∣S∣ = 18, 278

● 3-ISL function:
▸ ∣Σ∣ = 7
▸ ∣S∣ = 19, 607
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EXPERIMENTS

Each function is learned:
● over segments, tested for learnability
● separately for each feature f ∈ F, also tested for success
● in both left-to-right and right-to-left processing directions
● k = 1 by default and increased when necessary

We also introduce a minimal sample search procedure: AMBA, which
identifies a minimal subset of S sufficient for learning. We draw batches
without replacement and test for success.

This yields two sample types:
● M: segmental sample, batch size = 50
● M(F,f): featural sample for feature f , batch size = 1
● We run 10 iterations and report the average and standard deviation (SD)

Finally, we compute a synthesis of all individual featural samples to allow
direct comparison with segmental performance.
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ENGLISH: RESULTS

Left-to-Right Right-to-Left

Feature f Set k = 2 Learned k Set k = 2 Learned k
Avg. SD Avg. SD Avg. SD Avg. SD

[ nas
cons ] 31 3.88 29 10.10 32 4.33 27 3.90

[round] 8 2.27 3 0 6 3.57 3 0
[cor] 23 4.76 4 0 16 11.73 4 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Synthesis
(Avg.) 189 10.06 46 3.71 137 10.50 44 1.89

Segments
(Avg. ∣M∣) 6,157 650.21 – – – – – –

∣S∣ 18,278
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YAWELMANI: RESULTS

Left-to-Right Right-to-Left

Feature f Set k = 3 Learned k Set k = 3 Learned k
Avg. SD Avg. SD Avg. SD Avg. SD

[ high ] 148 27.12 4 0 147 23.42 4 0
[ long ] 317 49.02 251 63.26 169 17.58 155 21.02
[ cons ] 36 5.47 3 0 30 11.52 3 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Synthesis
(Avg.) 952 49.90 258 62.95 851 56.51 164 21.24

Segments
(Avg. ∣M∣) 16,583 702.06 – – – – – –

∣S∣ 18,278
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CHUKCHI: RESULTS

∣M(F,f)∣

Feature f Left-to-Right Right-to-Left
Avg. SD Avg. SD

[ round ] 165 30.34 192 51.10
[

son
low ] 225 30.28 227 35.57
[

cont
tense ] 260 12.77 244 19.54
[

delrel
long ] 924 57.82 892 41.75
[

distr
cor ] 801 14.98 917 55.02
[ tense ] 32 5.69 36 9.56
. . . . . . . . . . . . . . .

Synthesis (Avg.) 2,331 46.27 2,352 43.24
Segments (Avg. |M|) 17,181 28.87 – –

|S| 19,607
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POLISH: RESULTS

Left-to-Right Right-to-Left

Feature f Set k = 3 Learned k Set k = 3 Learned k
Avg. SD Avg. SD Avg. SD Avg. SD

[ voice
son ] 214 10.73 193 29 233 85.93 101 38.13

[
high
voice
son
low
] 7,119 907.70 6,984 1,262.72 7,360 630.27 7,156 695.43

[ round ] 137 51.76 4 0 173 45.04 4 0
[ dor ] 32 4.33 3 0 31 11.15 3 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Synthesis
(Avg.) 8,235 208.39 8,211 139.89 8,114 145.28 8,068 202.83

Segments
(Avg. ∣M∣) 16,583 702.06 – – – – – –

∣S∣ 19,607
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POLISH: BIGGER ALPHABET

∣M(F,f)∣
Left-to-Right Right-to-Left

Feature f Σ = 8 Σ = 9 Σ = 10 Σ = 8 Σ = 9 Σ = 10

[ voice
son ] 215 239 179 76 126 –

[
high
voice
son
low
] 7,506 – – 8,186 – –

[
high
voice
nasal
low
] – 8,827 8,007 – 8,982 –

[ round ] 137 173 134 144 158 –
[ dor ] 35 29 26 35 41 –
. . . . . . . . . . . . . . . . . . . . .

Synthesis
(Avg.) 8,225 8,851 8,911 8,844 8,823 –

Segments
(Avg. ∣M∣) 30,344 52,161 79,540 – – –

|S| 37,448 66,429 111,110 37,448 66,429 111,110
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CONCLUSION

Key findings

● Learning phonological patterns is sensitive to how we represent
the data — switching from segments to features drastically
reduces data requirements.
● Features allow for flexible k values and help to keep track of

what is changing exactly and what remains the same.
● Directionality matters: in many cases, right-to-left processing

leads to smaller and more efficient models.
● A sample search algorithm (AMBA,) successfully identifies a

smaller sufficient sample. (We can definitely do better!)
● These results offer a roadmap for building interpretable,

data-efficient learning models grounded in phonological
structure.
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FUTURE STEPS

1 Evaluate the approach on more naturalistic datasets, including
textbook-style data sets

2 Extend the analysis to other classes: TISL, OSL, TOSL
3 Design a searchable model space with controlled variables — k,

features, directionality, tiers — to identify the most data-efficient
configurations

4 Incorporate noisy and incomplete data to evaluate robustness
5 Integrate learning lexicon
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