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This study investigates the learnability of morpho-phonological pro-
cesses from featural representations, focusing on functions within the
class of k-Input Strictly Local (k-ISL) functions (Chandlee et al. 2014;
Chandlee and Heinz 2018). We present the Factor by Feature (FxF)
framework that decomposes the learning task into smaller ones along
featural dimensions. As we show, this allows substantial reduction in
the size of the data samples sufficient for successful generalization.

We empirically evaluate FxF on five phonological processes across
four languages: English, Yawelmani, Chukchi, and Polish, represent-
ing cases of feature spreading, feature changing, and feature inser-
tion. Comparisons are provided in each case between learning these
processes over segments and with FxF, using SOSFIA (Jardine et al.
2014) as the core learning mechanism. However, the FxF framework
is compatible with any algorithm designed for inferring morpho-
phonological mappings. To better measure data efficiency, we also
introduce AMBA, a sampling algorithm that identifies smaller charac-
teristic samples, which informally are sets of data points that guaran-
tee successful generalization.

Our results demonstrate that FxF consistently yields more com-
pact and learnable data representations, significantly reducing the size
or characteristic samples. These findings underscore the importance of
phonological representation and support linguistically informed learn-
ers for morpho-phonological grammars.
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1 INTRODUCTION

It has been recognized for decades that morpho-phonological alter-
nations can be described with finite-state machines (Johnson 1972;
Kaplan and Kay 1994). Recent work in subregular phonology further
shows that these patterns belong to highly structured subclasses of
the regular languages and relations, which require limited complexity
(Heinz 2010a; Heinz and Idsardi 2013). In particular, many morpho-
phonological processes can be modeled with subsequential functions,
which are a proper subset of regular string-to-string mappings (Heinz
and Lai 2013; Chandlee et al. 2014; Chandlee 2017; Chandlee et al.
2018), and can be instantiated with deterministic finite-state trans-
ducers (DFTs) (Sakarovitch 2009). A wide range of attested processes
fall into a subclass of those functions, particularly, the class of k-Input
Strictly Local functions (Chandlee 2014; Chandlee and Heinz 2018).
This class bounds the relevant context to a fixed memory window k.
These formal restrictions align with empirical typology and provide
insights into computational properties of morpho-phonological pro-
cesses.

Importantly, the subregular perspective also provides formal
learnability results. While sequential functions can, in theory, be iden-
tified in the limit (Gold 1967; Oncina et al. 1993), the data samples
that are sufficient for successful generalization are typically larger
than – and qualitatively distinct from – realistic linguistic data (Gildea
and Jurafsky 1996). In practice, human learners are exposed to limited
input (Lignos and Yang 2016), yet they successfully acquire morpho-
phonological grammars without explicit instructions (Yang 2013).
This discrepancy between the learnability results and the actual lan-
guage acquisition is one of the primary motivations for this research.
More data-efficient learners may not only bridge the gap between the-
ory and practice, but can also address the under-representation of
low-resource languages in language technology (Wiemerslage et al.
2022; Nag et al. 2024).

To address this challenge, we propose a novel approach to learn-
ing morpho-phonological processes that incorporates featural repre-
sentation of data to reduce the characteristic sample. As discussed in
the grammatical inference literature (de la Higuera 2010; Heinz et al.
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2015; Heinz and Sempere 2016; Wieczorek 2017), a dataset D is a
characteristic sample for a learning algorithm A and a target concept C
provided that for any set of data S including D (D ⊆ S) it is the case
that A returns an accurate representation of C given S. Informally, the
presence of a characteristic sample in the data guarantees a successful
generalization. Building on the feature-based learning strategy intro-
duced by Markowska and Heinz (2023), we introduce the Factor by
Feature (FxF) framework that decomposes the learning problem, such
that the target function is understood as a collection of functions, one
for each feature in the set, each of which must be inferred. Inference
is conducted over values associated with each features, as opposed
to fully specified segments. Such factorization allows a reduction in
the size of the alphabet, which directly affects the size of the trans-
ducer, and therefore the size and quality of the characteristic sample.
The FxF framework can be used with any learner suitable for morpho-
phonological grammars. Here we adopt an already existing algorithm
for learning classes of sequential functions in linear time and data,
SOSFIA (Jardine et al. 2014).

The FxF approach is empirically evaluated on four morpho-
phonological alternations across four distinct languages: English vowel
nasalization, Yawelmani vowel shortening, Chukchi final schwa epenthe-
sis, and an opaque interaction of final devoicing and o-raising in Pol-
ish. In each case, we compare the standard segment-based learning
scenario to the feature-based one. The results show that FxF con-
sistently achieves the desired generalization with significantly fewer
training examples. For a 2-ISL process with one feature change (such
as English), we observe up to 98% reduction in the size of a char-
acteristic sample. In more challenging cases, such as epenthesis and
interaction of processes affecting multiple features, the reduction was
at best 86% for Chukchi and 52% for Polish, given a limited input
alphabet of size 7. These findings highlight the practical benefit of
incorporating phonological representations into the learner, and they
support the view that linguistically informed algorithms can be both
formally rigorous and data-efficient.

This paper is organized as follows. Section 2 reviews the role of
features in phonology and grammatical inference, and provides an
overview on learners capable of inferring classes of sequential func-
tions. Section 3 introduces the necessary formal definitions and nota-
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tions. Section 4 introduces the factoring by feature idea and explains
how morpho-phonological functions can be decomposed along featu-
ral dimensions. Section 5 provides theoretical explanation for why a
learning strategy like FxF can, in principle, reduce the size of char-
acteristic samples. Section 6 describes the algorithms central to this
work. Section 7 presents the empirical evaluation of the approach on
the aforementioned processes with and without the FxF approach. Fi-
nally, Section 8 offers further discussion of the novel framework and
its limitation, as well future work. Finally, Section 9 concludes with a
summary of the contributions of the paper.

2 RELATED WORK

2.1 Importance of Phonological features

Phonological features have played a central role in linguistic theory,
tracing back to seminal work by Roman Jakobson and Nikolai Trubet-
zkoy (Jakobson et al. 1951; Trubetzkoy 1969) and extensively devel-
oped in subsequent theoretical framwork, such as SPE (Chomsky and
Halle 1986). Features group speech sounds into natural classes, which
both simplifies description of phonological rules and enables gener-
alization across typologically diverse languages (Clements and Hume
1995). For example, a rule can target voiced obstruents (

�
+ voice− sonorant

�
)

as a natural class rather than listing individual segments within that
class. Furthermore, features also allow one to represent phonemic
distinctions at various levels of representations (Kaye 1980; Rubach
2019). For example, in English the distinction between aspirated
voiceless stops is merely a surface one, while native speakers of Thai
consider aspiration to be a contrastive feature that is necessary to dis-
tinguish the types of voiceless obstruents in the mental representation
(Hyman 1975, p. 26–27).

At the same time, the nature of features remains a subject of de-
bate (Duanmu 2016). Traditional generative approaches assume that
features are innate and are part of the learner’s prior knowledge (e.g.
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Chomsky and Halle 1968; Bale and Reiss 2018), while alternative ac-
counts explore how features themselves could be learned from dis-
tributional patterns (e.g. Mielke (2008); Mayer (2020)). In practice,
most computational models assume that a feature system is ‘baked’
into phonological models (e.g. Gildea and Jurafsky 1996; Hayes and
Wilson 2008). We adopt this assumption in our work.

Recent work has shown that incorporating phonological repre-
sentations, such as features or tones, into formal learners yields sub-
stantial benefits. For example, Rawski (2021) argues that the BUFIA
learner (Chandlee et al. 2019) can efficiently learn phonotactic con-
straints by navigating through structured feature space, and Swan-
son et al. (2025) demonstrate this efficacy on the phonotactics of
Quechua (Wilson and Gallagher 2018). Also, Li (2025) extends this
insight to tonotactic patterns using autosegmental representations.
These findings show that learning in a rigorously constrained hypoth-
esis space, informed by phonological representation, enables provable
and successful inference. Building on this insight, our work proposes
a feature-based approach to learning morpho-phonological processes
(mappings), offering a novel framework that integrates linguistic rep-
resentation with formal learnability results.

2.2Subregular Classes in Phonology

This work stems from the idea that phonology is subregular, in other
words, computationally simple. On the stringset side (phonotactics),
Heinz (2010a) argues that local phonotactic belong to the Strictly
Local class and that long-distance phonotactic patterns belong to the
Strictly Piecewise class. As such, well-formedness depends only on a
contiguous substrings or non-contiguous subsequences. Subsequent
logic-based characterizations (Rogers and Pullum 2011; Rogers et al.
2013) and the consideration of the Tier-Based Strictly Local class
(Heinz et al. 2011; McMullin 2016; Lambert and Rogers 2020; Lam-
bert 2023) further reinforce that phonotactic patterns occupy a very
restricted complexity range. Furthermore, these classes, when param-
eterized, can be learned by simple mechanisms (Heinz 2010b; Heinz
et al. 2012; Jardine and Heinz 2016; Jardine and McMullin 2017;
Lambert et al. 2021). Additional related classes for phonotactics are
studied by Lambert (to appear).
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Of particular relevance to this study are subregular classes of
string-to-string functions that canmodel various morpho-phonological
processes. Long established results in computational linguistics show
that phonological rules can be represented with sequential functions
and modeled with deterministic finite-state transducers (Kaplan and
Kay 1994; Sakarovitch 2009). Chandlee (2014); Chandlee and Heinz
(2018) demonstrates that many phonological processes fall into small
subclasses of sequential functions: Input Strictly Local (ISL) and Out-
put Strictly Local (OSL). The outputs in ISL functions are determined
based on a bounded window of the input context, while in OSL func-
tions the outputs depend on a bounded window of the output context.
More complex processes might require projection of relevant elements
onto tiers or other formal devices (Jardine 2016; McCollum et al. 2020;
Burness et al. 2021; Lambert and Heinz 2024).

The subregular classification of phonological mappings offers sig-
nificant advantages for learnability. When a learner is equipped with
the prior knowledge that the target function lies within a well defined
subregular class, the hypothesis space can be constrained accordingly,
which enables efficient generalizations. Such restrictions not only re-
duce the risk of overfitting but also provide formal guarantees of con-
vergance and correctness. In the next subsection, we provide a review
of algorithms designed to identify classes of sequential functions.

2.3 Subsequential function classes learners and their
limitations

Oncina et al. (1993) introduce the Onward Subsequential Transducer
Inference Algorithm (OSTIA), which successfully identifies any total
subsequential function in the limit, given a positive characteristic sam-
ple. OSTIA constructs a prefix tree transducer and enforces onward-
ness, a property which guarantees that outputs are produced as soon
as they are determined. Next, compatible states are merged, which
allows for further generalization to unseen data. While the algorithm
runs in polynomial time, its cubic time and data complexity can be
computationally expensive in practice (Gildea and Jurafsky 1996).

Chandlee et al. (2014) present the ISLFLA algorithm that particu-
larly learns the class of k-ISL functions. The learner, like OSTIA builds
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a prefix tree transducer andmerges states to produce a transducer with
the appropriate structure. The counterpart for k-OSL functions was de-
veloped by Chandlee et al. (2015) and is called OSLFLA. It generalizes
by constructing a finite-state transducer and iteratively exploring the
states reachable from an initial state and associating transitions with
the longest common prefix of the outputs observed in the training
data. Both learners run in quadratric time and data. Thus in practice,
if one knows the target process belongs to the k-ISL or k-OSL func-
tions, then considerations of efficiency would favor use of ISLFA and
OSLFLA over OSTIA.

Jardine et al. (2014) introduce the Structured Onward Subsequen-
tial Function Inference Algorithm (SOSFIA) which identifies particu-
lar subclasses of subsequential function in linear time and data. SOS-
FIA assumes that the underlying structure of the transducer model-
ing target function is known in advance. For many subregular classes,
such as k-ISL functions, this is in fact the case: the class determines
the structure of the transducer. Consequently, the learning problem
is then reduced to calculating the outputs for each transition. Due to
its efficiency relative to other learners, we adopt SOSFIA as the basis
for illustrating the Factor-by-Feature approach proposed in this paper.
Further technical details on the algorithm are provided in Section 6.

While the above discussed learners undoubtedly show important
advances in the learning of sequential functions, they all share a core
limitation. In particular, they require large, highly specific character-
istic samples. Gildea and Jurafsky (1996, p. 507) note that the char-
acteristic sample “may require types of strings that are not found in
the language for phonotactic or other reasons.” For example, it may
require a string containing a ttt sequence. The practical consequence is
that actual data sets do not contain characteristic samples. For learn-
ers such as OSTIA or ISLFLA, that construct transducers from the data
where each encountered data point has its representative path, missing
data points lead to failure in generalization or incomplete functions.
SOSFIA, on the other hand, technically refuses to output a transducer
in the absence of a characteristic sample, though heuristics can be
added to ensure that it outputs something.

Because all of these learners operate over symbols represent-
ing segments, they are unable to generalize across the segments that
share some phonological features specifications. Put differently, sym-
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bols such as [b], [d], [g] are seen as entirely separate units, and their
crucial similarity of being voiced obstruents is lost. This contrasts
with the phonological intuition that rules or constraints are often de-
scribed in terms of natural classes, and not segments in isolation. The
FxF framework directly addresses this issue by shifting the learning
problem from segment-level to feature-level processes. By identifying
the target function in terms of each individual feature, FxF allows for
generalization across any segment sharing particular feature values,
which in turn reduces the data and improves interpretability. Further-
more, because feature-based learners can learn processes conditioned
on combination of various features without explicit evidence for each
segment representing those combinations, the FxF approach may not
only overcome data sparsity issues but also bring the formal modeling
and learning of morpho-phonological functions closer to traditional
linguistic theory.

3 PRELIMINARIES

Let Σ denote a finite input alphabet of segments and F a finite set of
binary and ternary features with values from the set: {+,−, 0}. If w is a
string, then |w| signifies the length of the string. λ is the empty string
and |λ| = 0. Given strings u and v, their concatenation is denoted as
uv. If w = uv, u−1w = v. The prefixes of w are defined as follows:
Pref(w) = {u ∈ Σ∗ : uv = w, v ∈ Σ∗}. The longest common prefix (lcp)
is then the longest prefix shared among a set of strings.
Definition 1. The lcp of a set of strings S, where S ∈ Σ∗, is defined in
terms of Pref(w) as follows:

lcp(S) = x iff x ∈ ⋂
w∈S
Pref(w),∀x ′(x ′ ∈ ⋂

w∈S
Pref(w)=⇒|x ′| ≤ |x |)

Let ∆ denote an output alphabet. Given a relation t : Σ∗ ×∆∗,
for all w ∈ Σ∗ and for all v ∈ ∆∗, if (w, v), (w, v′) ∈ t implies v = v′,
then t is a function and we write t(w) = v. A function is total iff for all
w ∈ Σ∗ there exists v ∈∆∗ st. t(w) = v.
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Similarly to prefixes, we define suffixes of w as follows: Suff(w) =
{v ∈ Σ∗ : uv = w, u ∈ Σ∗}. For any function f : Σ∗ → ∆∗ and w ∈
Σ∗ we define the tails of x with respect to f as tails f (x) = {(y, v) :
f (x y) = uv, u = lcp( f (xΣ∗))}. Informally, the tails of x with respect
to f is the function identified with the input/output pairs (y, v) that
extend from the input x and the lcp of all of possible outputs from
input strings beginning with x (x , lcp( f (xΣ∗)). Two strings x and x ′
are tail-equivalent with respect to a function f iff tails f (x) =tails f (x ′).
We also denote it as follows: wx ∼ f x ′, where ∼ f is the equivalence
relation induced by tails f which partitions Σ∗. A subsequential function
is a function f that ∼ f Σ

∗ into finitely many blocks (Choffrut 1977,
2003; Oncina and Garcia 1991).

3.1Subsequential Finite-State Transducer

There are different ways to represent finite-state transducers that de-
fine sequential functions (Oncina et al. 1993; Mohri 1997; Choffrut
2003). We use the delimited onward finite-state transducer (Jardine
et al. 2014) because it associates every output with a transition, which
simplifies presentation and analysis of the SOSFIA learning algorithm.
Formally, onwardness relates the states in the transducer to the blocks
induced by the tails equivalence relation. Informally, it ensures that
outputs are produced as early as possible.
Definition 2. A delimited onward subsequential finite-state transducer
(DFT) is a tuple (Q,Σ,∆, q0, q f ,δ) where Q is a finite set of states; Σ and
∆ are input and output alphabets, respectively; q0 ∈ Q is the initial state;
q f ∈Q is the final state; the transition relation is δ ∈Q× (Σ∪{o,n})×
∆∗×Q; o and n are the left and right boundary symbols respectively, and
the following holds:
i. if (q, a, v, r) ∈ δ then q 6= q f and r 6= q0 (there are not outgoing
transitions from the final state nor any transitions incoming to the
initial state),

ii. if (q, a, v, q f ) ∈ δ then a = n and q 6= q0 (all transitions to the final
state have as input the right word boundary and do not originate in
the initial state),

iii. if (q0, a, v, r) ∈ δ then a = o (all transitions out of the initial state
have as input the left word boundary)
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iv. if (q,o, v, r) ∈ δ then q = q0 (all transitions which have as input the
left word boundary originate in the initial state),

v. if ((q, a, v, r), (q, a, u, s) ∈ δ then (v = u) and (r = s) (determin-
ism),

vi. (∀q ∈ (Q−q0))[lcp{v ∈ Σ∗|(∃a ∈ Σ, r ∈Q)[(q, a, v, r) ∈ δ]}= λ]
(onwardness).

The function a DFT τ recognizes can be defined by establishing a recurrence
between input strings, states, and output strings. Informally, the idea is that
given a state q and with an output string y already written, we can process
an input string x letter by letter until its end, and return an updated output
string y ′. Formally, this function has type π : Q ×∆∗ ×Σ∗ → ∆∗ and is
defined as follows.

π(q, y,λ) = y

π(q, y, ax) = π(q′, yv, x) provided (q, a, v, q′) ∈ δ
Finally, the function defined by τ is

�
(x , y) ∈ Σ∗×∆∗ | π(q0,λ,oxn) =

y
	
. We write τ(x) = y iff (x , y) ∈ τ.
For additional details regarding these DFTs see Jardine et al.

(2014).

3.2 Input Strictly Local (ISL) Functions

One class of sequential functions that we focus on in this paper are
Input Strictly k -Local (k−ISL) functions defined below in Definition 3
(Chandlee et al. 2014).
Definition 3. A function f is ISL iff there is a k such that for all u1, u2 ∈
Σ∗ if Suffk−1(u1) = Suffk−1(u2) then tails f (u1) = tails f (u2). A function
is k-ISL if it is ISL for some k.
We limit our attention to total k-ISL functions. Informally, for ev-

ery total ISL function f , there is a k marking the length of the widest
substring required to define f , and there is a DFT representing f which
is structured in a particular way: the current state of the machine
is always determined by the previous k − 1 symbols read in the in-
put. Such DFTs are called k-ISL DFTs. Chandlee et al. (2014) provide
an automata-theoretic characterization of ISL functions, Lambert and
Heinz (2023) characterize them algebraically, and their relevance to
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phonology is discussed in Chandlee and Heinz (2018) and Chandlee
et al. (2018).
Definition 4. A total k-ISL DFT has the following properties:
• Q = Σ≤k−1 ∪ {q0, q f },
• ∀q ∈Q\{q0, q f },∀a ∈ Σ,∃v ∈∆∗ s. t. (q, a, v,Suffk−1(qa)) ∈ δ.
• ∃v ∈∆∗ s. t. (q0,o, v,λ) ∈ δ.
• ∀q ∈Q\{q0, q f }, ∃v ∈∆∗ s. t. (q,n, v, q f ) ∈ δ.
An important insight resulting from the definition of a k-ISL DFT

is the dependency of |Q| on the parameter k and the cardinality of
Σ. In other words, the larger the k or the larger the alphabet Σ, the
larger the state space. The cardinality ofQ can be calculated as follows:
|Q|=∑k−1

n=0 |Σ|n + 3.1

3.3Example: English Vowel Nasalization

Let us consider a concrete example of a 2-ISL function, such as English
vowel nasalization. In this process vowels are nasalized when followed
by nasal consonants. This phenomenon has received substantial at-
tention in the literature and remains a topic of ongoing debate. The
researchers offer opposing views on whether the alternation is best an-
alyzed as a low-level phonetic effect or as a categorical phonological
rule.

From a phonetic perspective, several studies have argued that the
process arises from gestural overlap between the articulatory move-
ments of a vowel and a following nasal consonant (Cohn 1993; Krakow
1993; Fowler and Brown 2000). As such, nasality can be interpreted as
an automatic product of coarticulation and does not require reference
to abstract linguistic representations.

On the other end of the spectrum, researchers claim that this
process should be treated as a phonological in nature. Solé (1995),
Chen (1997), and Proctor et al. (2013) show that nasalization is sys-
tematically conditioned and that listeners perceive nasalized vowels
as distinct from their oral counterparts. Generative analyses of En-
glish phonology typically assume that vowels are underlyingly oral

1Number 3 includes the initial state q0, final state q f , and lambda state λ.
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and undergo regressive nasalization when followed by tautosyllabic
nasal consonants (Selkirk 1972; Hayes 2009). An exception to this
traditional view emerges in Optimality Theory (Prince and Smolensky
1993) under the principle of Richness of the Base (Kager 1999). The
traditional view, advocated by Krakow and Huffman (1989) and for-
malized by Krämer (2015), treats the alternation as a predictable, non-
contrastive feature-spreading rule. We adopt this view in our study.
For the purpose of this study we do not introduce syllable boundaries
to the data and we represent the process as follows:
(1) Vowel Nasalization (VN)

[−cons] −→ [+nasal] / � +cons−nasal
�

We now turn to explaining how this process can be modeled with
a 2-ISL DFT, using a toy alphabet Σ = {a, m, t}. With this alphabet,
the cardinality of Q is 6. A 2-ISL DFT representing a full inventory of
English phonemes will quickly grow in size as every phoneme needs
to be represented in a separate state. Figure 1 presents a 2-ISL DFT for
|Σ| = 3. The initial, final and λ states and their associated transitions
are omitted for better readability. The outputs on the transitions to and
from the initial and final states are specified to be the empty string.
The outputs on the transitions from the λ state to the m, a, and t states
are m, λ, and t, respectively.

Consider how the DFT depicted in Figure 1 maps /mat/ to [mat]
(as shown in Table 1) and maps /tam/ to [tãm] (as shown in Table 2).

Input: o m a t n
States: q0 → λ → m → a → t → q f

Output: λ m λ at λ

Table 1: How the DFT in Figure 1 maps /mat/ to [mat].

Because nasalization is conditioned by a right context, the tran-
sitions into the ‘a’ state from a distinct state outputs λ because at this
point, it is unknown whether the following segment will be nasal or
not so it is unknown whether to output ‘a’ or ‘ã.’ Once the segment
following ‘a’ is read, the output produces either a, at, or ãm appro-
priately. With the growth of the alphabet, it would be observed that

[ 12 ]



Learning with features

a

m

t

m:m

a:a

t:t

a:λ

m:m

a:ãm

a:at

t:t

a:λ

Figure 1: A 2-ISL DFT modelling vowel nasalization in English for Σ = {a, m, t}
and ∆ = Σ∪{ã}.

all vowel states behave in a similar manner, a generalization that can
be captured with featural but not segmental representations. The fol-
lowing section provides details on how we incorporate phonological
features into the learning process.

Input: o t a m n
States: q0 → λ → t → a → m → q f

Output: λ m λ ãm λ

Table 2: How the DFT in Figure 1 maps /tam/ to [tãm].

3.4Features

In this work, we consider a feature ϕ to be a function from an al-
phabet Σ to the set of values {+,−, 0}, which indicate positive, neg-
ative, or a null value for the feature respectively. This function can
be lifted to a homomorphism from Σ∗ to {+,−, 0}∗ in the natural
way. For example, given the feature system for English in Table 3,
ϕ[cor](mat) = [− 0 + ] and ϕ[cons](mat) = [+ − + ]. If F is an ordered
set of features, then ΦF is a pointwise product of its homomorphisms.
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For instance, Φ[ cor
cons](mat) =
�− 0 +
+ − +
�
. Given F , we observe that there

are maximally 3|F | distinct representations, which we refer to as the
size of the featural alphabet, denoted |ΦF |. Finally, given a sample S of
input/output pairs, let 〈ΦX ,ΦY 〉(S) = {(ΦX (x),ΦY (y)) : (x , y) ∈ S}. In
other words, for any pair of strings (x , y) we can project the x string
to the set of features and the y string to a potentially distinct set of
features.

4 DECOMPOSING FUNCTIONS WITH
FEATURES

We aim to decompose the target sequential function f : Σ∗→∆∗ into
n-many sequential functions, one for each featureϕ. In this work, each
ϕ is individually represented with a k-ISL DFT, τ(Φ,ϕ), where ϕ is the
feature whose values are being output by the machine, and Φ is a set
of features being used to predict ϕ. Put differently, each τ(Φ,ϕ) can be
thought of as aiming to predict a particular feature ϕ of the output
using only the feature set Φ in the input. The feature combination Φ
may vary across the n-many transducers.

For instance, consider the prior example of English vowel nasal-
ization. Table 3 provides 22 features and so this process will be repre-
sented by 22 transducers, one for each feature. In this work, we assume
each of these will be represented with a 2-ISL DFT, though we discuss
in the conclusion why we believe this assumption can be relaxed in
future work. All but one of these features, [nasal], is always faithful to
its underlying representation. Consequently, for a faithful feature ϕ,
the transducer τ({ϕ},ϕ) will be the 2-ISL DFT whose input and output
alphabets correspond to the feature values, and which represents the
identity function. Specifically, the outputs on the transitions with an
input σ ∈ ΣΦ is the string σ. The outputs on the transitions with an
input symbol σ ∈ {o,n} is the empty string λ.

In English vowel nasalization, the feature [nasal] is not always
faithful. Furthermore, its surface value cannot be predicted from the
feature [nasal] alone. Instead, the features [nasal] and [consonantal]
are sufficient to determine its output value. Thus the feature [nasal]
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Table 3: Feature chart for English phonemes.
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is modeled with the 2-ISL DFT τ([ nascons],nasal). The input alphabet (andthus the states) of this DFT correspond to the set of feature values
combinations of [nas, cons] in the input.

While there are 23 logical combinations available, in practice we
only use those combinations that are present in a particular dataset.
In the case of English, this means we ignore the valued features [0
nasal] and [0 consonant]. Since both of those particular features have
binary values {+,−}, this transducer could be composed, in theory, of
up to 22 states, i.e. {[++ ] , [−+ ] , [−− ] , [+− ]}, where the upper symbol in
each pair represents values for feature [nasal], and the lower one rep-
resents values for [consonantal]. Similarly, the state [++ ] corresponds
to a nasal consonant, [−+ ] corresponds to an oral consonant, and so
on. However, in this analysis of English vowel nasalization, there are
no underlying nasal vowels; hence the state [+− ] can also be omitted
from this transducer.
Figure 2 represents τ([ nascons],nasal) for vowel nasalization in En-glish. Once again, we omit the initial, final and lambda states for bet-

ter readability. Also, note the difference between the input and output
notations: the square brackets around the inputs indicate a collection
of values for a single segment. The outputs are strings of values for
the feature nasal only. For example, [+− ] : ++ means that a [+ nas

+ cons ]
symbol is being read and two [+nasal] symbols are being output.

This example appears to suggest that the feature-based model of
English nasalization is more complex than the segment-based model.
The feature-based model consists of 22 DFTs and the segment-based
model contains a single DFT. Furthermore, as each of the DFTs is a
2-ISL DFT with |Σ| ≤ 3, they roughly have the same number of states.
So the total number of states in the feature-based model is roughly
22 times that of the segment-based model However, it is important
to notice that the segment-based DFT in Figure 1 is built only for 3
segments: {a, m, t}. The crucial difference between the transducer op-
erating over segments, from the model operating over features, is that
as the size of the segmental inventory grows, the number of states
will increase in the segment-based model, but not in the feature-based
model. This is the particular reason why learning sequential functions
over features requires less data. This point is discussed in greater de-
tails in the next section.

Finally, we need to explain precisely how the feature-based model
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[++ ]

[−− ]

[−+ ]

�
+
+
�
: +

�−− �: −

�−
+
�
: −

�−− �: λ �−
+
�
: −

�
+
+
�
: ++

�−
+
�
: −

�
+
+
�
: +

�−− �: λ

Figure 2: A 2-ISL DFT�� nasal
cons

�
,nasal
� for English vowel nasalization.

with its n-many DFTs (one for each ϕ ∈ F) produces an output from
an input like /tam/. Recall the notation τ(Φ,ϕ) for each of these DFTs,
where Φ is the set of features determining the input alphabet and ϕ is
the feature whose values are being output. Essentially, an input string
x is projected according to Φ and then processed by τ(Φ,ϕ), producing
a string of feature values for ϕ. This happens for each τ(Φ,ϕ) in the
feature-based model, and thus n-many strings of feature values are
produced. The feature values across strings are then combined by a
direct product in order to recover the segmental units. This workflow
is schematized in Figure 3.

5WHY FEATURAL DECOMPOSITION
SHOULD FACILITATE LEARNING

This section argues on theoretical grounds that learning the feature-
based representations will need less data. For concreteness, we make
the argument with k-ISL DFT transducers.

Jardine et al. (2014) prove that the size of a characteristic sample
for a target DFT τ is O(|τ|) (Lemma 18). In other words, the size of
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/tam/

 +cons−nas
. . .

  −cons−nas
. . .

  +cons+nas
. . .



cons + − + cons + − +
nas − − + …

τ cons τ nas τ . . .

cons + − + nas − + + …

 +cons−nas
. . .

  −cons+nas
. . .

  +cons+nas
. . .



[t ãm]

Segmental input

Featural representation

Featural Φ projections
for the ϕ DFTs

Inputs to DFTs

ϕ DFTs

Outputs of DFTs

Direct product

Featural representation

Segmental output

Figure 3: The generation process by which a feature-based model gen-
erates outputs from inputs.

[ 18 ]



Learning with features

the characteristic sample is a linear function of the size of the trans-
ducer. The size of a DFT τ is a sum of all states and the outputs on all
transitions (Definition 5).
Definition 5. The size of a DFT τ= (Q,Σ,∆, q0, q f ,δ) is |Q|+∑(q,a,v,r)∈δ |v|.

Following Definition 4, the number of states in a k-ISL DFT is
simply the cardinality of Σ≤k−1

+ 3. Because the size of a k-ISL DFT
transducer is dependent on |Σ| and k, reducing one of these variables
will have a significant effect on the size of the DFT. Table 4 presents
an example of how the state space grows in terms of |Σ| and k. For a
2-ISL function, the number of states equals |Σ|+3. As k increases, the
number of states increases exponentially. For k = 3, if the alphabet
consists of 5 segments, the number of states will grow to 33, while for
|Σ|= 10, the number of states will increase to 113.

|Σ| k = 2 k = 3 k = 4

5 8 33 158
10 13 113 1,113
25 28 153 3,278
50 53 2,553 127,553
100 103 10,103 1,010,103

Table 4: The number of states in k-ISL DFTs.

What do these numbers mean for segment-based models vis a vis
feature-based models? In a segment-based model, Σ is the alphabet of
segments. In a feature-based model, Σ is the number of feature value
combinations used in a particular feature machine.

Consider the example discussed earlier for English vowel nasaliza-
tion. For concreteness, assume a variety of English with 40 phonemes.
It follows that the segmental model would consist of a single 2-ISL
DFT with 43 states. Now consider the segmental model. This consists
of 22 2-ISL DFTs. For faithful features like [consonantal], there are
only 2 feature values {+,−}, which constitute Σ. This [consonantal]
DFT would have 5 states. For a vowel feature like [high], there are
3 feature values {+,−, 0}. Thus, the [high] DFT has 6 states. For the
[nasal] DFT depicted in Figure 1, there are also 6 states, because only
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three combinations of the features [nasal, consonantal] are present on
the input side in any data sample (recall that the combination [+− ] is
omitted since underlying vowels are not nasal).

As mentioned, the size of a characteristic sample to learn these
DFTs is linear in the size of the DFT. Each of the feature DFTs is a
fraction of the size of the segmental DFT, and it follows that the sam-
ple needed to generalize correctly is correspondingly a fraction of the
size of the characteristic sample to learn the segmental DFT. In other
words, a smaller machine results in a smaller characteristic sample.
Section 7 provides empirical evidence supporting this hypothesis.

There are some caveats worth discussing, which helps motivate
the subsequent empirical analysis. It is the case that the total size of
the feature-based model is the sum of the sizes of the 22 DFTs. If each
DFT had six states, the total size of the feature-based model would
thus be 132, almost three times the size of the segmental model. It is
natural to wonder whether the feature-based model is really a smaller
model.

There are two reasons the comparison in the above example can
be misleading. First, this example is particularly simple in order to
help explain the basic concepts. Processes with larger k windows re-
quire much larger DFTs; in fact, the number of states grows exponen-
tially with respect to k. For instance, suppose there is a language with
50 phonemes described with 20 binary features (so each ϕ ∈ F has
only 2 values) and consider a 3-ISL process where each feature value
can be predicted from a combination of two features (so the |Σ| would
be of size 4). A segment basedmodel needs 2,553 states (Table 4). Each
DFT in the feature model would have at most 20+ 3 states, and thus
the entire model contains 20 × 23 = 460 states. In other words, as
the k value increases, feature-based models can be significantly more
compact.

One potential objection to this line of reasoning is that as the
number of feature combinations grow, the size of Σ in the feature-
based model can grow as well. For example, if there was one feature
value that required 10 binary features to predict that could potentially
mean an alphabet of size 210. This objection is valid to a certain extent.
We acknowledge that in the worst case, the feature-based model may
be no better than the segmental basedmodel, and could even be worse.
However, we also do not anticipate that the worst case appears very
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often. For example, we are not aware of any phonological processes
that required 10 features interacting to predict the value of a feature.
Feature systems are also generally ‘sparse’ in the sense that one can
usually find fewer than 10 features to uniquely pick out a phoneme.
In other words, the specter of the worst case may be more theoretical
than found in actual practice.

The second reason for comparing the total size of the segmental
model to feature-based model is that the size of the characteristic sam-
ple for the feature-based model may not be the sum of the sizes of the
characteristic samples of the individual DFTs that make it up. Those
characteristic samples may overlap quite significantly.

In short, the questions raised by this theoretical analysis motivate
the empirical investigation in the next section. We believe the results
there vindicate the approach advocated for here.

6THE ALGORITHMS

This section describes three algorithms central to this study. First we
discuss the SOSFIA algorithm introduced by Jardine et al. (2014). Next
we present the Factor by Feature (FxF) algorithm which uses SOSFIA.
Once again, we emphasize that the FxF algorithm is a broader concept
that can work with any inference algorithm. Third, we present an algo-
rithm that selects a near-minimal sample from the characteristic sample
for SOSFIA. We call this algorithm A Minimal Sample Search Algo-
rithm (AMBA). AMBA is helpful to better measure the near-minimal
sizes of characteristic samples.

6.1SOSFIA

SOSFIA takes as its arguments a finite sample of input-output pairs
S ⊂ Σ∗ ×∆∗, and an output-empty DFT τ�, i.e. a transducer where
for every (q, a, v, r) ∈ δ, v = �, where � represents a ‘blank’ that
needs to be filled in. Each output-empty DFT corresponds to a class of
sequential functions which vary only in what strings are assigned to
the blanks. Many important subregular classes of functions can in fact
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be represented by an output-empty DFT, such as the k-ISL functions.
Jardine et al. (2014) prove that the algorithm successfully infers the
class of sequential functions represented by τsquare given a sufficient
data sample.

SOSFIA conducts a breadth-first search through the output-empty
DFT considering the shortest path that led to that state. In the case
of the k-ISL DFTs, the shortest path is essentially encoded in the state
label. For example, given a 3-ISL DFT, the shortest input prefix that
leads to the state ‘ma’ state is ‘oma’. SOSFIA stores in a queue un-
treated states together with their shortest prefixes. The next step iden-
tifies the outputs on the transitions using two functions common_out
and min_change, defined below.
Definition 6. The common_out of an input prefix w in a training sample
S is the lcp of all wv in S:

common_outS(w)= lcp({u ∈ Σ∗ : ∃v s.t. (wv, u) ∈ S}).
Definition 7. The min_change from a string w to a string wσ in a
training sample S:

min_changeS(σ, w) =

¨
common_outS(σ) if w= λ
common_outS(w)−1common_outS(wσ) otherwise

Given a transition (q, a,�, r), SOSFIA calculates the lcp of all the
outputs associated with the input strings beginning with the short-
est prefix to q, as well as the lcp of all the outputs associated with
the input strings beginning with the shortest prefix to r by way of
q and a. Then the minimum change between common_out(q) and
common_out(r) is determined and replaces the blank square in the
(q, a,�, r) transition. The procedure is repeated until the queue track-
ing untreated states is empty. Jardine et al. (2014) provide additional
detail and pseudo-code regarding SOSFIA.

6.2 Factor by Features (FxF)

The FxF algorithm decomposes sequential data into subegmental units
(features) and learns functions for those individual units, separately.
Given a set of features F of cardinality n, a sample S (input-output
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pairs with segmental representations), a k value, the FxF algorithm
iterates through the features ϕ ∈ F and for each ϕ it finds a set of fea-
tures Φ such that the k-ISL DFT τ(Φ,ϕ) accurately predicts the feature
values in the sample. The final output of FxF is a grammar G contain-
ing n-many τ�(Φ,ϕ), one for each ϕ ∈ F . The pseudocode is presented
in Algorithm 1.
Algorithm 1: Factor by Feature (FxF)
Data: A sample S ⊂ oΣ∗ n×∆∗, a feature set F , and a non-negative integer k
Result: A set G containing n-many k-ISL DFTs, one for each ϕ ∈ F

G← ;
for all ϕ ∈ F (in lexicographic order) do
τ(Φ,ϕ)← FeatSearch(k, S, F,ϕ, [{ϕ}])
G← G ∪ {τ(Φ,ϕ)}

end for
return G

As discussed earlier, it is often the case that information from
more than one feature is required to determine the output feature
values of a feature ϕ. FeatSearch searches for a featural combina-
tion which makes accurate predictions for ϕ. It takes as arguments a
non-negative integer k, the sample S, the feature system F , the target
feature ϕ and a list of feature sets FeatLIST, which is initialized with
one item in the list: the singleton feature set {ϕ}.

The algorithm dequeues the first feature combination Φ from
FeatLIST and evaluates it. It checks if the projected sample S(Φ,ϕ) is
functional using the is_functional function (Definition 8). If it is,
a new k-ISL DFT τ(Φ,ϕ) is constructed. The newly constructed DFT
and S(Φ,ϕ) are then passed as arguments to SOSFIA and FeatSearch
returns the output of SOSFIA.

If S(Φ,ϕ) is not functional, on the other hand, FeatSearch gener-
ates a new list of feature combinations with the feat_combo function
(Definition 9) and recursively calls itself with this new list appended to
the rear of the queue, searching for a sufficient featural combination.

Definition 8. A data sample S is functional under the projection functions
Φx and Φy iff for all (u, v), (u′, v′) ∈ S, if Φx(u) = Φx(u′) then Φy(v) =
Φy(v′).
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Definition 9. feat_combo(ϕ, m, F) produces a list of feature sets where
each feature set containsϕ and is of sizem. Formally, feat_combo(ϕ, m, F)
returns the set {Φ ⊆ F | ϕ ∈ Φ, |Φ|= m} and puts its elements in a queue.
Algorithm 2: FeatSearch
Data: A nonnegative integer k, a sample S ⊂ oΣ∗n×∆∗, a feature set F , a feature
ϕ, and a list of sets of features FeatLIST
Result: A DFT τ(Φ,ϕ)

while FeatLIST is not empty do
Φ← dequeue(FeatLIST)
m← |Φ|
if is_functional(S(Φ,ϕ)) then
τ�← build output-empty, k-ISL DFT with Φ and ϕ
return SOSFIA(τ�, S(Φ,ϕ))

end if
end while
NewFeatLIST← feat_combo(ϕ, m+ 1, F)
return FeatSearch(k, S, F,ϕ,NewFeatLIST)

6.3 Learning vowel nasalization over features: an example

We illustrate FxF(SOSFIA) with the English vowel nasalization exam-
ple. Consider the sample S with pairs (mæn, mæ̃n) and (mææ̃, mææ̃).
Let F be the feature system in Table 3 and k = 2. Then FxF(SOSFIA)
initializes an empty grammar G, and considers the features in F one
by one.

Suppose the first feature it considers is ϕ = [nasal]. It proceeds
to run FeatSearch with FeatLIST initialized to [{ϕ}]. It dequeues
FeatLIST, setting Φ = {ϕ} and m = 1. It then calculates the projected
sample S([nasal],nasal) to be ([+-+], [+++]) and ([+-+], [+-+]).
As such, is_functional outputs False, and feat_combo generates all
feature sets with [nasal] of length 2 and places them on NewFeatLIST.
FeatSearch calls itself again with NewFeatList.
On this next round, the queue FeatLIST contains more than one

feature set, and it checks them one at a time. For example, if Φ
=[nasal, voice], then is_functional would again return False since
the projected sample S(

�
nasal
voice

�
,nasal) is not functional. This is because

[voice] does not provide sufficient information to predict the right
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outputs for [nasal]. Particularly, it does not separate vowels from
consonants. As such, Φ would be reset to the next element in the
queue, and the process would continue.

Eventually FeatSearch dequeues Φ = [nasal, cons]. The pro-
jected sample S(

�
nasal
cons

�
,nasal) is functional. Consequently, FeatSearch

constructs an output empty, k-ISL DFT τ���nasalcons

�
,nasal
� and passes it

with S��nasal
cons

�
,nasal
� to SOSFIA, returns the output, and terminates.

Interestingly, any feature combination which distinguishes con-
sonants from vowels is sufficient to make the right predictions for the
feature [nasal]. For example, the feature [labiodental] assigns a value
0 to all vowels and either + or − to consonants. Consequently, the
projected sample S(

�
nasal

labdent

�
,nasal) is functional and would also lead to

SOSFIA outputting a transducer. FeatSearch terminates with the first
feature combination that works. Thus, the order in which the feature
sets Φ are considered does matter, though we abstract away from this
choice in this description of the algorithm. We return to this point in
the experimental and discussion sections later.

Finally, if none of the feature sets containing [nasal] of length |Φ|
result in is_functional outputting True, the length is increased by one,
and the procedure repeats. In the worst case, all the features are added
and the algorithm is in the same situation as it would be from trying to
learn with segments. With the feature [nasal] completed, FxF(SOSFIA)
moves on to the next feature, and continues to do so until transducers
are obtained for each feature.

To summarize, FxF(SOSFIA) factors the problem of learning a
phonological process along featural dimensions. For each feature it
searches successively more complex feature combinations until it finds
one that generalizes successfully given the other constraints on learn-
ing (such as the k-ISL structure). While in the worst case, the problem
reaches a stage where it is essentially learning over segmental repre-
sentations, the idea is that, in practice, the decomposition to features
allows correct generalizations to be found more quickly in the sense
that much less data is required. To establish this point empirically
requires a way of measuring the amount of data that is sufficient for
FxF(SOSFIA) to succeed and to compare it to the amount of data that is
sufficient for SOSFIA over segmental representations to succeed. That
is the purpose of the next algorithm.
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6.4 Characteristic sample and a minimal sample search
algorithm (AMBA)

This section describes SOSFIA’s characteristic sample (henceforth, CS)
that guarantees success in learning k-ISL functions and provides a sim-
ple heuristic method for finding a near-minimal characteristic sample
that is a subset of the CS provided by Jardine et al. (2014). This heuris-
tic will be used as a measuring stick in the experimental case studies
when investigating how much data is sufficient for a successful gen-
eralization.

Jardine et al. (2014) present formal concepts for a class of func-
tions T, a class of representations (grammars) R, a learning algorithm,
and a characteristic sample.
Definition 10. Let T be a class of functions represented by some class of
representations R. A sample S for a function t ∈ T is a finite set of data for
which (w, v) ∈ S iff t(w) = v. A (T,R)-learning algorithmA is a program
that takes a sample for a function t ∈ T and outputs a representation from
R.
Definition 11. Let L be a naming, total function that maps R onto T.
For a (T,R)-learning algorithm A , a sample CS is a characteristic sample
of a representation r ∈ R if for all samples S for L (r) s.t. CS ⊆ S, A
returns r.
In this context, k-ISL functions are represented with k-ISL DFTs

and for a CS of a representation r = k-ISL DFT, SOSFIA outputs a
representation r ′ which corresponds to the original k-ISL DFT, which
generated CS.
By referring to the properties of k-ISL DFTs and SOSFIA’s method

of inferring the underlying k-ISL function, we show that the minimum
size of the longest string sx ∈ 〈ΦX ,ΦY 〉(CS) = 2k− 1.
The core idea is that a characteristic sample exposes all possible

paths in the transducer to ensure the learning algorithm has complete
information. In Lemma 16, Jardine et al. (2014) show that for each
transition (q, a, v, r) ∈ δ in a DFT the sample needs to include a set of
strings of the form pas where
i. p is the shortest input that leads from the start state to state q
ii. a is the input symbol on the transition
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iii. s is a shortest string that leads from state r to any state in the
machine

There is another condition to Lemma 16, but due to the properties
of k-ISL DFTs, it does not apply since the structure of the k-ISL DFTs
precludes it.
Proposition 1. For k-ISL functions and for SOSFIA, a sample which in-
cludes all strings up to length 2k− 1 is characteristic.

Proof. From the definition of k-ISL functions, the shortest substring
that needs to be considered at a time is k-long. Therefore, it is neces-
sary to consider k-long substrings from every state q ∈ Q \ {q f } in the
k-ISL DFT for the function. Denote the shortest string to reach q from
q0 be pq. We are interested in max{pq | q ∈ Q \ {q f }}. The furthest
non-final state q from q0 is reachable by a string of length equal to
k − 1. In other words, the depth of the k-ISL machine (excluding q f )
is k − 1. Hence, the sum of the depth of a k-ISL DFT (k − 1) and the
memory window (k) is equal to 2k− 1.

By Lemma 16 in Jardine et al. (2014), it follows that if S contains
all strings up to length 2k− 1 then it is characteristic.

Proposition 1 provides a characteristic sample for k-ISL functions,
but it does not necessarily provide the smallest such sample. Next we
present a procedure for searching for a near-minimal CS: A Minimal
Sample Search Algorithm (AMBA).

Algorithm 4: A Minimal Sample Search Algorithm (AMBA)
Data: A segment-based k-ISL DFT τ, a sample S ⊂ oΣ∗n×∆∗, a feature
set F
Result: A near-minimal sufficient sample
min_sample← ;
min_sample← min_sample∪ random(S, 10)
G← FxF(min_sample, F, k)
while ¬match(G,τ) do
S← S \min_sample
min_sample← min_sample∪ random(S, 10)
G← FxF(min_sample, F, k)

end while
return min_sample
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AMBA is built on top of FxF. It takes three arguments: an origi-
nal, segmental-based DFT τ representing the target process, a sample
S generated with τ, and a feature set F . It selects 10 input-output pairs
at random from S and stores them in a variable called min_sample.
The selected pairs are subsequently provided as an argument to
FxF(SOSFIA), which ultimately returns a grammar G, which is a col-
lection of k-ISL DFTs, one for each feature in F . AMBA then calls the
match function to contrast the output of FxF(SOSFIA) with the orig-
inal τ. For each ϕ in F, the match function transforms the original
τ by collapsing transitions and states by projecting the output labels
under ϕ and by projecting the input labels and state names under the
set Φ associated with ϕ in G. This method generates a collection of n
distinct DFTs τ(Φ,ϕ), each corresponding to a feature ϕ ∈ F . This set
is then evaluated against the output of FxF(SOSFIA) for the same fea-
tures F . If the compared sets are identical, it means that FxF learned
a representation for the target function with min_sample and thus
AMBA returns it. If not, the procedure continues sampling without re-
placement until the min_sample is large enough to infer the function,
i.e. until the sample is sufficient.

7 EMPIRICAL ARGUMENTS

This section presents four case studies evaluating the performance of
FxF(SOSFIA) and SOSFIA in learning four distinct sequential func-
tions, each representing a phonological process attested in natural lan-
guage. The processes include: vowel nasalization in English (2-ISL),
vowel shortening in Yawelmani (3-ISL), schwa epenthesis in Chukchi
(3-ISL), and an interaction between final devoicing and O-raising in
Polish (2-ISL and 3-ISL, respectively).

Generally, the objectives of the case studies aim to evaluate the
performance of the novel algorithm, FxF(SOSFIA). In particular, they
test the hypothesis that FxF(SOSFIA) requires significantly less train-
ing data compared to SOSFIA. Finally, they also investigate the near-
minimal samples produced by AMBA by comparing outputs for both al-
gorithms against the originally generated characteristic samples (CS).
Due to the inherent randomness in AMBA’s minimal sample selection,
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each experiment was repeated ten times. The reported results include
both the mean and standard deviation across the runs.

The characteristic samples were constructed using a subset of
phonemes from the respective languages. Ideally, the entire phone-
mic inventories would be used. However, full data generation proved
computationally expensive due to the size of the resulting CSs. For
example, Yawelmani’s inventory includes 43 segments, and modeling
vowel shortening as a 3-ISL function yields a characteristic sample of
size |CS|= 150,508,643 (see Proposition 1). To keep the experiments
tractable, phonemic inventories were reduced such that |CS| did not
exceed 20,000. However, this practical decision was not without con-
sequences, as discussed in later sections.

All of the data and code used to run these experiments are avail-
able at the author’s github repository.

7.1Representative k-ISL functions

This section presents five phonological processes attested across four
natural languages. The processes were deliberately selected to illus-
trate variation in the value of k as well as in the number and type of
phonological features involved in their computation. As with the case
of English vowel nasalization, we acknowledge that alternative anal-
yses and debates exist for some of the phenomena discussed. Our aim
is not to argue for any one analysis in particular but instead to use
concrete examples to meet our objectives. These examples should be
understood as representative instances of broader classes of processes
that fall within the expressive range of k-ISL functions.

7.1.1Vowel nasalization in English

Vowel nasalization was introduced and discussed in section 3.3. As
mentioned, the process we are describing has been expressed with a
phonological rule like the one shown in (3.3), repeated below.
(2) Vowel Nasalization (VN)

[−cons] −→ [+nasal] / � +cons−nasal
�

By modeling vowel nasalization in this way, we test whether a
learner can infer a contextually conditioned alternation that depends
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on the feature composition of a following segment. In particular, we
expect that the feature [nasal] will not be sufficient on its own to learn
the generalization and will require additional information from other
features, such as [consonantal], which condition the alternation. The
phonemes used for the experiments are presented in Table 3.

7.1.2 Vowel Shortening in Yawelmani

Yawelmani is a dialect of Yoktus, an American Indian language spoken
in California. Its phonemic inventory consists of consonants exhibiting
contrastive aspiration and glottalization, and vowels with underlying
length contrast (Hockett 1967; Kenstowicz 1994). The 7 phonemes
used to generate the dataset are summarized in Table 5.

Segment o i o: i: úh g n
high - + - + 0 + 0
low - - - - 0 - 0
tense - + - + 0 0 0
front - + - + 0 0 0
back + - + - 0 0 0
round + - + - - - -
long - - + + 0 0 0
cons - - - - + + +
son + + + + - - +
cont + + + + - - -
delrel 0 0 0 0 - - 0
approx 0 0 0 0 - - -
nasal - - - - - - +
voice + + + + - + +
lab 0 0 0 0 - - -

labdent 0 0 0 0 - - -
cor 0 0 0 0 + - +
ant 0 0 0 0 - 0 +
distr 0 0 0 0 - 0 -
strid 0 0 0 0 - 0 -
lat 0 0 0 0 - - -
dor 0 0 0 0 - + -

constrgl 0 0 0 0 + - -
spreadgl 0 0 0 0 - - -

Table 5: Feature chart for Yawelmani phonemes
used in experiments.

Yawelmani exhibits a process of vowel lengthening, where under-
lying long vowels are shorten on the surface. This alternation can be
observed, for instance, in imperative and non-future verb stems (Ken-
stowicz 1994, p. 108).
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(3)
future imperative non-future gloss
wo:n-en won-ko won-hin ‘hide’
la:n-en lan-ka lan-hin ‘hear’
me:k-en mek-ka mek-hin ‘swallow’

Kenstowicz and Kisseberth (1979)[p. 84] propose that the condi-
tion for the vowel shortening is two consecutive consonants.
(4) Vowel Shortening (VS)�−cons

+long
� −→ [-long] / [+cons][+cons]

In contrast, Archangeli (1991) analyzes these alternations as an
emergent consequence of prosodic well-formedness. She proposes that
vowel length alternations result from a templatic requirement, where
long vowels shorten in closed syllables to satisfy prosodic constraints.
Blevins (2004) challenges both phonological accounts, arguing that
many length alternations are morphological or lexical in origin. She
further observes that long high vowels can surface faithfully, suggest-
ing that vowel shortening is not a productive process in the synchronic
grammar.

We adopt Kenstowicz and Kisseberth’s rule in (4), since it pro-
vides a clear view into the contrast between 2-ISL and 3-ISL function
learning where the change affects only a single feature. We expect that
[long] alone does not carry sufficient information to infer the under-
lying function on its own.

7.1.3Schwa epenthesis in Chukchi

Chukchi is an endangered Chukotko-Kamchatkan language spoken in
Siberia. From its phonemic inventory of five vowels and 13 consonants
(Dunn 1999), seven were chosen for experiments (Table 6).

Chukchi was selected for this study because it exemplifies a dif-
ferent type of phonological pattern, namely, final @-epenthesis (see
examples in 5). This case is particularly interesting because, unlike
in the previous processes, this transformation affects every single fea-
ture and predicting sufficient featural combinations for learning is not
an immediate and trivial task. In English, for example, it was evident
that [nasal] depended on contextual information from [cons]; here,
on the other hand, the specifications required for successful learning
of individual features are far less transparent.
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Segment i o m p t ì s
high + - 0 0 0 0 0
low - - 0 0 0 0 0
tense + + 0 0 0 0 0
front + - 0 0 0 0 0
back - + 0 0 0 0 0
round - + - - - - -
long - - 0 0 0 0 0
cons - - + + + + +
son + + + - - - -
cont + + - - - + +
delrel 0 0 0 - - + +
approx 0 0 - - - - -
nasal - - + - - - -
voice + + + - - - -
lab 0 0 + + - - -

labdent 0 0 - - - - -
cor 0 0 - - + + +
ant 0 0 0 0 + + +
distr 0 0 0 0 - - -
strid 0 0 0 0 - - +
lat 0 0 - - - + -
dor 0 0 - - - - -

Table 6: Feature chart for Chukchi phonemes used in experiments.

Krause (1980) identifies three distinct environments in which /@/
may be inserted, typically to break up biconsonantal or triconsonantal
clusters. For the purposes of this paper, we only focus on the insertion
of schwa to break up word-final bi-consonantal clusters. Examples of
this phenomenon are shown below.

(5)
noun-ABS.SG noun-ABS.PL gloss

mim@l miml@t ‘water’
lew@t lewt@t ‘mouth’
qep@l qepl@t ‘ball’

In these example, the underlying representations arguably are /miml,
lewt, qepl/ for the singular forms and /mimlt, lewtt, qeplt/ for the
plural forms. A rule like the one in (6) applies to break up the word-
final consonant cluster.
(6) Final epenthesis (FE)

ø−→ @ / [+cons] [+cons] #
We acknowledge that the distribution of epenthetic schwa in

Chukchi is more complex than modeled in 6, as it may interact
with additional phonological processes, including final vowel dele-
tion (Dunn 1999). Our goal, however, is to test the effectiveness of
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the FxF(SOSFIA) on this type of process. For that reason, we restrict
the process to one environment: the insertion of /@/ between two
consonants at a word boundary (Krause 1980, p. 53).

7.1.4Final devoicing and o-raising in Polish

The final phonological phenomena that we consider involves interac-
tion of two strictly local processes. Rule interaction has a rich history
in phonological theory (Kiparsky 1973; Baković 2007; Chandlee et al.
2018; Baković and Blumenfeld 2024). In this study, we focus on an
opaque interaction between two processes in Polish: word final ob-
struent devoicing and O-raising. Data in 7 presents selected cases of
[O] raising to /u/ when followed by voiced obstruents and approxi-
mants and remaining the same in the context of a following nasal.

(7)

singular plural gloss
ruk rOg-i ‘horn’
sOk sOk-i ‘juice’

üwup üwOb-1 ‘crib’
snOp snOp-1 ‘sheaf’
bur bOr-1 ‘forest’

dzwOn dzwOn-1 ‘bell’
dOm dOm-1 ‘house’

The interaction is called opaque because there are forms like [ruk]

‘horn, sg.’ and [üwup] ‘crib, sg.’ where O-raising has applied yet the
following sound in the surface form is devoiced. Typical analyses, dis-
cussed below, account for this by applying O-raising before word-final
obstruent devoicing.

Similarly to the previous cases, we acknowledge that the O-raising
process is complex and has been the subject of various analyses (see
Bethin 1978; Buckley 2001; Gussmann 2007). Here we adapt SPE style
analysis of the rule described in Kenstowicz (1994, p. 77). To correctly
derive the surface forms, O-raising (8) must precede final obstruent de-
voicing (9). This creates a counterbleeding type of order as the reverse
order would prevent O-raising from applying.
(8) Final Devoicing (FD)

[-sonorant] −→ [-voice] / n
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(9) O-raising (OR)� −cons
+back−low
� −→ [+high] / � +cons+voice−nasal

�
n

FD is a 2-ISL function while OR is 3-ISL. A 3-ISL function can
model their interaction. Interestingly, a finite-state representation of
this rule interaction does not appear to impose any order between the
two processes. See Chandlee et al. (2018) for more discussion of how
k−ISL DFTs can model a range of processes which interact opaquely.
The phonemes chosen for the experiments are presented in 7.

Feature a O Õ u b t d n ù ü

voice + + + + + - + + - +
son + + + + - - - + - -
cons - - - - + + + + + +
cont + + + + - - - - + +
cor 0 0 0 0 - + + + + +
ant 0 0 0 0 0 + + + - -
dor 0 0 0 0 - - - - - -
lab 0 0 0 0 + - - - - -
distr 0 0 0 0 0 - - - - -
delrel 0 0 0 0 - - - 0 + +
nasal - - + - - - - + - -
lat 0 0 0 0 - - - - - -
high - - - + 0 0 0 0 0 0
back + + + + 0 0 0 0 0 0
low + - - - 0 0 0 0 0 0
tense - - - + 0 0 0 0 0 0
round - + + + 0 0 0 0 0 0

Table 7: Feature chart for Polish phonemes used in experiments.

7.2 Data generation

For each of the four k-ISL functions, a corresponding k-ISL DFT is con-
structed and a characteristic sample consisting of underlying-surface
form pairs is generated accordingly. Following the Proposition 1, a set
of all logically possible n-grams over Σ∗ up to length 2k−1 is created
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to serve as the set of potential underlying forms. The constructed k-
ISL DFTs are then used to generate the corresponding surface forms
(outputs). These same transducers are also used to evaluate the results.

As previously mentioned, a constraint was imposed on the total
size of each characteristic sample (CS) to ensure that the number of
generated input–output pairs did not exceed 20,000. Since the size
of a CS, |CS|, depends on both the size of the alphabet (|Σ|) and the
function’s k value, these parameters were adjusted accordingly. For
the 2-ISL function, |Σ|= 26, resulting in a CS of 18,287 pairs. For the
3-ISL functions, a reduced alphabet size of |Σ|= 7 was used, yielding
CSs of 17,206 input-output pairs. We run additional experiments on
Polish, where we incrementally increase the input alphabet up to 10
to further showcase the difference between the growth of CS when
learning over segments vs. features (see Table 17 for details).

We introduce terminology corresponding to each of the types of
samples generated. There are five sample types performing various
roles, which are listed below.
• a sample (CS): a characteristic sample over segmental represen-
tations
• a near-minimal segmental sample (M): a near-minimal sample ran-
domly drawn from CS with AMBA calling SOSFIA.
• a feature-based sample (S(Φ,ϕ)): a sample extracted from CS whose
inputs and outputs are projected according to Φ and ϕ, respec-
tively, for each feature ϕ ∈ F . For example, S([high],high) is a
sample extracted from CS to predict [high] from [high], while
S
(
h
high
round

i
,high)

means that two features [high] and [round] are pro-
jected to predict [high].
• a near-minimal feature sample (M(Φ,ϕ)): a near-minimal feature
sample randomly drawn from S(Φ,ϕ) with AMBA calling the orig-
inal SOSFIA algorithm.
• a synthesis of M(Φ,ϕ) for allϕ ∈ F (MF): a segmental sample recon-
structed by combining the minimal feature-based samples M(Φ,ϕ)
for each feature ϕ ∈ F . To estimate how many full segmental
input-output pairs can be formed from these minimized compo-
nents, we identify compatible combinations of feature vectors that
jointly satisfy subsets of the segmental transformations observed
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in CS. For example, the following feature-based data points

. . .

([−+−++− ] , [++−]) ∈ S([nasal, cons],cons),

([0+−], [0+−]) ∈ S(cor,cor),

([0−−], [0−−]) ∈ S(lat,lat),

. . .

are all subcomponents of a segmental pair (ant, ãnt) ∈ CS. The
synthesized set MF reflects an upper bound on the number of seg-
mental input–output pairs that can be reconstructed from the fea-
tural data.

7.3 Results

This section presents a summary and interpretation of the results. First,
as expected, all four functions were successfully learned from the char-
acteristic sample, both with SOSFIA and with FxF(SOSFIA). Second,
when the data sample input to the learning algorithms was reduced
with AMBA, FxF(SOSFIA) consistently outperformed the segmental
baseline SOSFIA in terms of the amount of data sufficient for correct
generalization. The advantage of FxF was especially pronounced in
cases involving a single feature change and in the epenthesis process.
The Polish case, which involved interaction of multiple features, re-
quired additional justification and further experimentation to confirm
the effectiveness of the approach. Third, the results demonstrate that
AMBA shows that the data reduction for FxF(SOSFIA) is more sub-
stantial than it is for SOSFIA. For the feature-based FxF(SOSFIA) the
reductions in size from the CS ranged from 98% in the best case to
52% in the worst. In contrast, for the segment-based SOSFIA, AMBA
only achieved a reduction ranging from 66% to just 0.15%. We report
here only the results most relevant to the main discussion; full exper-
imental details and quantitative data are provided in Appendices A, B
and C.

In the ensuing discussion of the learning results, we refer to fea-
tures in F as either sufficient or insufficient. A feature ϕ is termed in-
sufficient if its values alone do not provide enough information to
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infer the target function. Formally, this means the sample S({ϕ},ϕ) is
not functional and thus FeatSearch must add additional features to
yield a functional sample. A feature ϕ is termed sufficient if it is not
insufficient (and so the sample S({ϕ},ϕ) is functional).

As mentioned in section 6.3, it is often true that multiple fea-
ture combinations are able to successfully predict a feature ϕ. While
FeatSearch is defined to stop once the first one is found, our im-
plementation returned all feature sets with the smallest cardinality
capable of predicting ϕ since we were curious about them. As such,
when calculating the synthesized sample MF , we used the combina-
tion which yielded the smallest functional sample for each insufficient
feature (or randomly selected one if there were more than one equally
smallest samples). While this technique was adequate to demonstrate
the core concept proposed here, future research will explore more lin-
guistically informed methods for selecting appropriate featural combi-
nations in cases where individual features are insufficient for learning
(see Section 8 for more details).

7.3.1English

Of the 22 features used in the English vowel nasalization case study,
only one feature, particularly [nasal], was found to be insufficient,
as expected. The remaining 21 features were individually sufficient
and yielded functional samples on their own. The projected samples
S(Φ,ϕ) for these features varied in size depending on the number of
values ϕ takes. For instance, as shown in Table 3, the binary feature
ϕ = [voice] (with values {+,−}) yielded a sample S(voice,voice) com-
prising 14 input-output pairs. In contrast, the ternary feature [cor]
produced S(cor,cor) with 39 input-output pairs. These samples were suc-
cessfully reduced using AMBA to average sizes of M(voice,voice) = 9 and
M(cor,cor) = 23, respectively. Please refer to Table 18 for the average
values of M(Φ,ϕ) across all features, and to Table 22 for the complete
results corresponding to each individual feature.

We identified 10 feature combinations yielding functional sam-
ples for the insufficient feature [nasal], whose sizes also varied de-
pending on the size of the resulting featural alphabetsΣΦ, denotedΣΦ.
As was already presented in Figure 2, combination of features [nasal,
cons] resulted in the input alphabet Σ�nasal

cons

� = {[−− ] , [−+ ] , [++ ]}. The
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remaining logical feature values [+− ] was not considered as we assume
English does not have underlying nasal vowels.

Accordingly, the projected sample S��nasal
cons

��
,nasal) contained 39

pairs. Other combinations involving [nasal] produced larger sample
sizes, particularly 84 and 155 pairs, depending on whether the featu-
ral alphabet contained four or five elements, respectively. In all cases,
AMBA was able to reduce the samples substantially. Since the pair
[nasal, cons] yielded the smallest functional sample, we used this com-
bination to construct the synthesized featural sample MF .

Table 8 presents a sample of cardinalities of the extracted samples
for features ϕ ([voice], [coronal], and [nasal], particularly). The Fea-
ture Sets Φ, in the first column, here as well as in the corresponding
tables for the remaining test cases, indicate what features were used
for input projections for ϕ. The bolded feature represents the spe-
cific feature ϕ whose values are predicted. When only a single bolded
feature appears, such as [voice], it means that the values of that fea-
ture alone were sufficient to define the characteristic sample for the
corresponding feature. In cases where multiple features appear, as in
[nasal, cons], the bolded feature (ϕ) is the (insufficient) predicted
feature, while the full set in brackets represents Φ, the set of features
that give a functional sample for ϕ.

Feature set Φ |S(Φ,ϕ)| Avg.
��M(Φ,ϕ)

�� SD
[voice] 14 9 2.66
[cor] 39 23 4.76
[nasal, cons] 39 31 3.89
[nasal, front] 84 68 10.9
[nasal, approx] 155 117 16.22

Table 8: Selected representative samples |S(Φ, ϕ)|, Avg. |M(Φ, ϕ)| and standard
deviation (SD) for VN in English for features [voice], [coronal], and [nasal].

Given the data samples M(Φ,ϕ) selected by AMBA for each ϕ ∈ F ,
we reconstructed the corresponding segmental sample MF . This en-
abled direct comparison with the segmental characteristic sample CS
and its averaged AMBA-reduced counterpart M .
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|CS| Segments Features
Avg. |M| SD Avg. |MF | SD

18,278 6,157 650.21 188 10.06

Table 9: Averaged segmental sample |M | and averaged synthesized featural
|M |F and their corresponding SDs in English.

The average size of a reduced characteristic sample M derived
from the segmental representation was 6,157. In contrast, the FxF
learner identified significantly smaller successful samples, with MF av-
eraging only 188 elements. Starting from an original sample of |CS|=
18,278, segmental learning achieved a 66% reduction, whereas fea-
tural learning achieved a 98% reduction. This substantial difference
demonstrates that featural decomposition in the FxF framework yields
more compact and data-efficient generalizations.

7.3.2Yawelmani

This case study examines vowel shortening in Yawelmani, a process
that, like English vowel nasalization, targets a single feature: [long].
What differs is that the environment for the change is larger and thus
requires more memory.

Contrary to our expectations, all features were sufficient for learn-
ing the vowel shortening function, including [long] in isolation. This
finding reflects a representational asymmetry: the values assumed for
the feature [long] themselves encode distributional distinctions that
parallel the relevant contextual split. In our dataset, [long] takes on
ternary values: {+, –, 0}, where {+, –} are exclusively associated with
vowels, and 0 with consonants. As a result, the learner can indirectly
infer the necessary contextual distinctions purely from this feature’s
values. This outcome show that not only the featural decomposition
but also the range and interpretation of values, can play a decisive
role in learnability.

Table 10 presents results from AMBA’s reductions of individual
feature-based samples S(Φ,ϕ). In the best-performing case, the sample
for [cor] was reduced by 59%. The smallest reduction was observed
for the target feature [long], which is expected, as it is the only feature
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that changes and, therefore, must be represented with particular data
that cover the necessary paths in the transducer.

Feature set Φ |S(Φ,ϕ)| Avg. |M(Φ,ϕ)| SD
[voice] 54 33 10.11
[round] 62 30 7.39
[ant] 309 136 19.28
[cor] 336 139 24.05
[long] 363 317 49.02

Table 10: Selected representative samples |S(Φ, ϕ)|, Avg. |M(Φ, ϕ)| and standard
deviation (SD) for VS in Yawelmani for features [voice], [round], [anterior],

[coronal], and [long].

Interestingly, the projected sample sizes S(Φ,ϕ) varied even among
features with identical value sets. For example, both [voice] and
[round] are binary features with values {+, –}, yet their sample
sizes differed. This disparity is attributable to the distribution of fea-
ture values among the segments. Because S(Φ,ϕ) is projected from CS,
the features whose values were less evenly distributed among the seg-
ments resulted in smaller projected samples. For example, in our data,
only one of the seven segments was marked as [–voice], whereas two
segments were [–round]; this skew resulted in a smaller sample for
[voice].

|CS| Segments Features
Avg. |M| SD Avg. |MF | SD

17,206 16,583 702.06 952 49.90

Table 11: Averaged segmental sample |M | and averaged synthesized featural
|M |F and their corresponding SDs in Yawelmani.

Overall sample sizes are summarized in Table 11. The segmen-
tal sample M , derived without feature factorization, had an average
size of 16,583 (4% reduction). In contrast, the synthesized featural
sample MF required only 952 examples on average. The larger trans-
ducer sizes observed in the Yawelmani case, driven by the larger k
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value, contributed to the higher sample size, which was expected as
discussed in Section 5. Nevertheless, the difference between reduction
over segmental learning vs. featural is much more pronounced than
in the English case study.

7.3.3Chukchi

The Chukchi epenthesis function presents a different learning sce-
nario, where each feature is affected due to the inserted segment. Sur-
prisingly, of the 22 features used to represent Chukchi segments, 13
were sufficient on their own. These tended to be features that, similar
to the situation in Yawelmani, implicitly distinguished vowels from
consonants via their value patterns. For instance, [lab] assigns the
value 0 to vowels and either + or − to consonants, providing a natural
partition of the inventory. The remaining 9 features were insufficient
individually, but when paired with complementary features that sup-
plied the missing contrast, they successfully learned the target func-
tion. For example, while [son] alone does not separate vowels from
consonants, its combination with [nasal] provides enough informa-
tion to infer the correct generalization.

Sample sizes for the projected datasets S(Φ,ϕ) varied widely, and
in many cases were substantially larger than those in the English and
Yawelmani experiments. For example, the combination S(

�
strid
dor

�
,strid)

produced 1,236 input-output pairs due to the resulted 4-element al-
phabet Σ� strid

dor

�. Table 12 shows the reductions obtained with AMBA.

Feature set Φ |S(Φ,ϕ)| Avg. |M(Φ,ϕ)| SD
[tense] 62 32 5.69
[high] 309 165 30.34
[round, high] 309 225 30.28
[lab] 363 313 8.88
[cont, tense] 363 306 18.02
[strid, dor] 1,236 955 58.46

Table 12: Selected representative samples |S(Φ, ϕ)|, Avg. |M(Φ, ϕ)| and standard
deviation (SD) for FE in Chukchi for features [tense], [high], [round], [labial],

[continuant], and [strident].
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Despite the challenge posed by the global nature of the epenthesis
transformation, FxF learning remained robust.

|CS| Segments Features
Avg. |M| SD Avg. |MF | SD

17,206 17,181 28.87 2,331 46.27

Table 13: Averaged segmental sample |M | and averaged synthesized featural
|M |F and their corresponding SDs in Chukchi.

Table 13 summarizes the overall segmental and featural sam-
ple sizes. The reduced characteristic segmental sample M remained
nearly identical in size to the original CS (avg.|M | = 17,181), show-
ing that little to no compression was achieved without factorization.
In contrast, the FxF approach yielded a significantly smaller sample
of 2,331 input-output pairs on average. Although this is larger than
the feature-based sample size obtained for the Yawelmani function
(avg.MF = 952), the difference reflects the more complex nature of
the process (feature insertion vs. feature changing). In this context,
the observed 86% reduction remains a strong result, demonstrating
the scalability and effectiveness of featural decomposition.

7.3.4 Polish

The Polish case study presents 3-ISL function involving two phonolog-
ical processes in a counterfeeding relation. While the featural learner
remained successful, the degree of sample reduction was significantly
less than what was found with the English, Yawelmani, and Chukchi
case studies. This was not due to the compositional nature of the func-
tion, but rather the complexity of one of its components; specifically,
the transformation of [O] to /u/, which required coordinated informa-
tion from multiple features.

In this alternation, features such as [high] and [tense] were in-
sufficient on their own and required combination with up to three ad-
ditional features to produce functional samples. Unlike the processes
that target broader classes (e.g. English [+nasal, –cons]) or Yawel-
mani (e.g., [+long, –cons]), the o-raising processes in Polish targets
a single segment, which necessitates distinctions between similar seg-
ments, here vowels. For instance, [low] is needed alongside [high]

[ 42 ]



Learning with features

to exclude vowel ‘a’, which does not undergo change. Contextual trig-
gers, on the other hand, could be successfully encoded by features like
[voice] and [sonorant].

Feature set Φ |S(Φ,ϕ)| Avg.
|M(Φ,ϕ)| SD

[nasal] 54 29 14,92
[son] 62 27 12.77
[round] 336 137 51.76� voice

son

�
336 214 10.73� high

voice
son
low

�
8,250 7,119 907.70� tense

voice
son

round

�
8,250 7,372 806.83

Table 14: Selected representative samples |S(Φ, ϕ)|, Avg. |M(Φ, ϕ)| and standard
deviation (SD) for FD and OR in Polish for |Σ|= 7, for features [nasal],

[sonorant], [round], [voice], [high], [tense].

Table 14 presents a subset of representative feature combinations
for |Σ| = 7. While most projected featural samples S(Φ,ϕ) were re-
duced by AMBA, the reduction was less prominent for features that
required extensive combinations. In particular, the input alphabet for
feature [high] (Σ[high,voice,son,low]) was reduced only marginally, re-
flecting the difficulty of compressing transformations involving sin-
gleton segments. As a result, the projected sample contained 8,250
input-output pairs and was reduced only by approximately 14%.

|CS| Segments Features
Avg. |M| SD Avg. |MF | SD

17,206 15,169 2,063.50 8,235 208.39

Table 15: Averaged segmental sample |M | and averaged synthesized featural
|M |F and their corresponding SDs in Polish.

Because the reduced samples M(Φ,ϕ) were significantly large, the
averagedMF samples remained large as well. Nevertheless, when com-
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pared to reduction over segmental data representation, FxF still comes
out ahead. Table 15 shows that the FxF procedure achieved 52% re-
duction, as opposed to segmental, which while better than in Chukchi,
was merely 12%.

Feature set Φ
|Σ|= 8 |Σ|= 9 |Σ|= 10

|S(Φ,ϕ)| |M(Φ,ϕ)| |S(Φ,ϕ)| |M(Φ,ϕ)| |S(Φ,ϕ)| |M(Φ,ϕ)|

[nasal] 54 43 62 29 62 43
[son] 62 32 62 34 62 23
[round] 336 162 336 136 336 153� voice

son

�
363 241 363 223 363 235� high

voice
son
low

�
8,446 7,416 - - - -� tense

voice
son

round

�
8,446 6,656 - - - -� high

voice
nasal
low

�
- - 17,892 13,122 17,892 8,122� tense

voice
nasal
round

�
- - 17,892 12,482 17,892 17,842

Table 16: Selected representative samples |S(Φ, ϕ)| and |M(Φ, ϕ)| FD and OR in
Polish with increasing |Σ| of 8, 9 and 10 phonemes.

To evaluate the robustness of the feature-based learner under in-
creasing inventory size, we incrementally expanded the phoneme set
by one symbol at a time (|Σ| = 8,9, 10) and re-ran the experiments
for each resulting alphabet size. Table 16 shows that although the
projected S(Φ,ϕ) samples grew in size, AMBA continued to yield con-
siderable reductions. This is particularly noticeable for feature [high]
with |Σ| = 10. The input alphabet for feature [high] was diminished
from 10 (segments) to 7. Because we hand-picked segments for this
case study, we made sure that they cover a wide variety of feature
values. As a result, we suspect that given the full inventory of Pol-
ish phonemes, the projected sample sizes for [high] and [tense] will
remain approximately same as to when |Σ|= 10.
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|Σ| |CS| Segments Features
|M| |MF |

8 33,352 30,344 8,283
9 59,868 51,161 16,272
10 101,110 79,540 17,945

Table 17: Samples |S|, |M|, and |M|F for increasing |Σ| of 8,9, and 10
phonemes in Polish.

Table 17 reports the overall segmental and featural reductions
at the full-sample level. While the segmental learner benefited mod-
estly from data pruning (at best 21% reduction with |Σ| = 10), the
feature-based learner achieved far more efficient compression. Partic-
ularly, with the largest alphabet, the reduction peaked to 82%. These
results suggest that even in cases involving tightly constrained alter-
nations and rare, singleton targets, FxF approach remains scalable and
resilient to inventory growth.

8DISCUSSION AND FUTURE WORK

The empirical studies presented in Section 7 demonstrate that the
Factor-by-Feature (FxF) approach significantly enhances the learnabil-
ity of k-ISL functions by reducing the size of the required training
samples. By introducing a systematic featural decomposition, FxF en-
ables learners to utilize the inherent structure of phonological systems,
which in turn reduces the complexity and size of the training sam-
ple requirement. The success of this approach can be consistently ob-
served across a range of phonological processes, where feature-based
learner outperforms the baseline segmental learner in data efficiency.

A key contribution of FxF is the modularization that it brings. This
approach allows to factor the learning problem into smaller, feature-
specific subproblems, which leads to efficient reduction of the under-
lying transducers. For processes involving a single feature alternation
(e.g., English vowel nasalization, Yawelmani vowel shortening), the
improvement is especially pronounced, with sample size reductions
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of up to 98%. Even in more complex settings like Polish, where rule
interaction and singleton transformations make learning more chal-
lenging, FxF still achieved a substantial reduction (over 50%) relative
to the original sample size.

Another important contribution is the stability of featural sam-
ple sizes under increased alphabet size. As shown in the Polish ex-
periments, the size of featural samples grew much more slowly than
segmental ones, highlighting the scalability of the approach. This is
crucial for practical applications, especially when working with large
phonemic inventories or naturalistic data.

Taken together, these findings support the hypothesis that morpho-
phonological learning benefits not only from prior knowledge about
the the type of function (as implemented in SOSFIA), but also from
the representational flexibility allowed by featural decomposition.
The FxF method uses this flexibility to construct more compact and
learnable representations, offering a promising direction for computa-
tional modeling of phonological acquisition and morpho-phonological
processes of low-resource languages in an interpretable way.

Despite the advantages of incorporating featural representation in
learning classes of sequential functions, the FxF approach could be fur-
ther advanced in various ways. First, while the present study holds the
memory window k constant and assumes the structure of the under-
lying transducer, the empirical results suggest that k, in many cases,
can be minimized for individual features. Particularly, the features
that do not reflect any changes between the inputs and outputs could
be, in theory, learned assuming a much simpler underlying structure,
i.e. 1-ISL DFT.

Second, one challenge that the FxF approach exhibits is a poten-
tial combinatorial explosion of feature combinations. This is particu-
larly true for the insufficient features that require additional informa-
tion from other features to correctly represent the process. In English
and Chukchi cases, certain features participate in a variety of rele-
vant combinations, expanding the computational power. One way to
address this issue would be incorporating structure into the feature
space, such as feature geometry (Clements 1985). A more structured
representation of the feature systemmay providemore efficient traver-
sal through the feature space, allowing the learner to prioritize more
plausible, from a linguistic perspective, combinations. An additional
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expansion of the relevant feature combination search could also con-
sider the size of ΣΦ for particular combinations Φ. For example, as
can be seen in Table 28 in Appendix C, the choice of featural com-
bination for the insufficient feature [nasal] has significant impact on
sample sizes. Particularly, S�nasal

low

� sample has 336 pairs projected from
the CS sample, while S�nasal

cor

� has 1300 pairs. In this study we manu-
ally picked the combinations that provided most efficient functional
samples, future improvements should incorporate this option into the
FeatSearch algorithm.

Third, the current work consistently assumes left-to-right process-
ing of the input string. Although it is known that the direction of pro-
cessing does not affect the structure of a k-ISL DFT, the potential ef-
fects of directionality on learnability have not yet been explored. For
most of the functions discussed here, the necessary context for change
was on the right, which requires the use of ‘waiting transitions’, i.e.
transitions that output λ (the empty string), postponing output until
the relevant context falls within the k window. If, instead, processing
direction was reversed to right-to-left, the relevant context would be
seen before the target symbol, eliminating the need for such waiting
transitions. Such change in directionality can thus reduce the number
of transitions whose outputs differ from the corresponding inputs. Un-
der the default assumption of input-output identity at the beginning
of learning process, switching the direction of processing may lead to
further reduction of characteristic samples.

Fourth, the current study is limited to k-ISL functions, which
while capturing a broad class of morpho-phonological processes, do
not cover all types of attested phenomena. Extending the framework
to capture more complex processes, such as long-distance or tonal,
will require adapting algorithms that handle tier-based representa-
tions and processes with intermediate representations, such as k-OSL
functions (Burness and McMullin 2019; Burness et al. 2021; Belth
2024). Investigating these extensions is necessary for building models
that are both typologically comprehensive and empirically grounded.

Finally, data in this study were synthetically generated. To more
rigorously evaluate the FxF approach, future work should incorpo-
rate more naturalistic data. An immediate first step would be to apply
the model to problem sets from phonology textbooks, which provide
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curated, yet realistic, examples representing different components of
phonological grammar, such as phonotactic constraints. Ultimately,
extending the analysis to include corpora of child-directed speech will
allow for a more thorough assessment of the approach’s plausibility as
a model of human language acquisition or language variation.

Taken together, these future directions point toward the need for
a flexible and adaptive model that can adjust its parameters as needed
for particular functions. As the FxF framework is inherently modular
and compatible with various learners, it seems to be well suited to sup-
port such adaptability. Future extensions could lead to a learner that
can determine whether another feature needs to be added to enrich
the input, adjust the k value as needed (beginning from the default
assumption that k = 1 for each feature ϕinF), and select the most ef-
ficient direction of processing. Furthermore, it could also incorporate
mechanisms for projecting relevant elements of tiers, where necessary
to, for example, capture long distance processes without compromis-
ing locality. Developing such a model could further reduce the charac-
teristic sample size, making FxF-based learning especially suitable for
low-resource languages, which remain underrepresented in language
technology research and applications.

9 CONCLUSION

This work demonstrates that featural representation of data can sub-
stantially enhance the learnability of k-ISL functions. By representing
segments with a bundle of binary or ternary features and learning
the function for each feature individually, the introduced Factor-by-
Feature approach effectively reduces both the input alphabet size and
the k-ISL DFT state space. From the theoretical point of view, this
aligns with the fact that a k-ISL function requires |Σ(k − 1)| states so
reducing the alphabet from segments to feature values can shrink the
model by orders of magnitude. The reduction in model size is mirrored
by the reduction of the characteristic sample required for successful
inference.

Empirically, we showed that a 2-ISL function with one feature
changing, such as English vowel nasalization, can be learned from
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approximately 188 input-output pairs, whereas the segment-based
learner required over 6,000 examples. Even for processes of different
nature, such as segment insertion affecting every feature, FxF provides
substantial benefits. This was examplified by the final @-epenthesis in
Chukchi, where the feature-based learner inferred the function from
approximately 2,331 examples, while the traditional, segmental ap-
proach required nearly the entire characteristic sample generated for
that process.

These results suggest that the success of morpho-phonological in-
ference is not only driven by computational constraints that prune
the space of where morpho-phonological processes lie in, but also by
the representational choices made by the learner. The FxF framework
shows how linguistic structure, here phonological features, can lead to
more compact and generalizable learning systems. While the present
study focuses solely on a subclass of sequential functions, the limita-
tions and directions for future research identified in previous section
show the broader relevance of the novel approach to learning morpho-
phonological processes.

While recent advances in the subregular approach to phonology
offered substantial theoretical insights over the past two decades, prac-
tical demonstration of their functionality remained limited. This work
addressed this gap by introducing generalizable and interpretable ap-
proach grounded in linguistic theory. Future empirical studies of this
kind will bring us closer to models adaptable to low-resource lan-
guages, as well as suitable for modeling language acquisition.
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A ALL AVERAGED SAMPLES

Feature set Φ |S(Φ,ϕ)| Avg. |M(Φ,ϕ)| SD� nasal
cons

�
39 31 3.89

[high] 39 24 4.52
[low] 39 23 7.51
[tense] 39 25 9.42
[front] 39 20 8.09
[back] 39 24 5.65
[round] 14 14 0.67
[long] 14 8 1.79
[cons] 14 9 2.02
[son] 14 10 1.66
[cont] 14 9 3.47
[delrel] 39 25 4.99
[approx] 39 26 9.29
[voice] 14 9 2.66
[lab] 39 24 4.72
[labdent] 39 26 4.72
[cor] 39 23 4.76
[ant] 39 24 5.80
[distr] 39 26 3.92
[strid] 39 24 8.50
[lat] 39 28 4.06
[dor] 39 25 5.38

Table 18: Samples |S(Φ, ϕ)|, Avg. |M(Φ, ϕ)| and standard deviation (SD) for all
sufficient features and selected one for the insufficient feature for VN in English.
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Feature set Φ |S(Φ,ϕ)| Avg. |M(Φ,ϕ)| SD
[high] 363 148 27.13
[low] 62 32 6.92
[tense] 363 159 32.15
[front] 363 146 30.43
[back] 363 167 23.66
[round] 62 30 7.39
[long] 363 317 2.63
[cons] 62 36 49.02
[son] 62 39 5.47
[cont] 62 34 7.77
[delrel] 62 34 6.19
[approx] 62 33 7.75
[nasal] 54 41 6.68
[voice] 54 33 10.11
[lab] 62 35 4.17
[labdent] 62 33 4.51
[cor] 336 139 24.05
[ant] 309 136 19.28
[distr] 62 32 8.09
[strid] 62 30 6.75
[lat] 62 31 4.92
[dor] 336 169 17.89
[constrgl] 336 157 32.91
[spreadgl] 62 35 7.51

Table 19: Samples |S(Φ, ϕ)|, Avg. |M(Φ, ϕ)| and standard deviation (SD) for all
sufficient features for VS in Yawelmani.
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Feature set Φ |S(Φ,ϕ)| Avg. |M(Φ,ϕ)| SD
[high] 309 165 30.34
[low] 62 38 5.45
[tense] 62 32 5.69
[front] 309 166 31.76
[back] 309 174 22.55� round

high

�
309 225 30.28

[long] 62 32 5.54
[cons] 62 31 4.95
[ sonlow ] 336 260 12.77
[ conttense ] 363 306 18.02� delrel

long

�
1,236 924 57.82

[approx] 62 34 6.24� nasal
son

�
336 290 17.26� voice

cons

�
363 305 21.22

[lab] 363 313 8.88
[labdent] 62 34 5.46
[cor] 363 305 17.30� ant
labdent

�
1,236 922 61.73� distr

cor

�
1,236 801 14.98� strid

dor

�
1,236 955 58.46

[lat] 336 274 12.90
[dor] 62 32 4.55

Table 20: Samples |S(Φ, ϕ)|, Avg. |M(Φ, ϕ)| and standard deviation (SD) for all
sufficient features and selected one for each insufficient feature for FE in

Chukchi.
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Feature set Φ |S(Φ,ϕ)| Avg. |M(Φ,ϕ)| SD� voice
son

�
336 214 10.73

[son] 62 27 12.77
[cons] 62 28 14.37
[cont] 62 26 7.70
[cor] 62 35 6.34
[ant] 336 157 17.27
[dor] 62 32 4.33
[lab] 62 25 14.26
[distr] 62 32 12.28
[delrel] 336 147 38.97
[nasal] 54 29 14.92
[lat] 62 31 15.93� high
voice
son
low

�
8,250 7,119 907.70

[back] 62 29 12.12
[low] 336 153 60.16� tense

voice
son

round

�
8,250 7,372 806.83

[round] 336 137 51.76

Table 21: Samples |S(Φ, ϕ)|, Avg. |M(Φ, ϕ)| and standard deviation (SD) for all
sufficient features and selected one for the insufficient features for FD and OR in

Polish.
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B ALL INDIVIDUAL SAMPLES

Fe
at
ur
es

et
Φ

|M
(Φ

,ϕ
)|

1
2

3
4

5
6

7
8

9
10

� nasal co
n
s

�
37

34
24

31
31

33
32

25
30

30
[h
igh
]

19
16

30
20

23
28

29
24

24
25

[lo
w]

19
35

27
23

26
12

30
23

26
11

[te
ns
e]

32
29

27
18

33
33

3
21

32
23

[fr
on

t]
21

32
6

23
8

26
23

19
27

19
[b
ac
k]

29
30

17
26

22
22

17
20

34
24

[ro
un

d]
11

8
8

12
8

7
6

5
8

11
[lo

ng
]

5
7

7
9

10
7

7
9

11
9

[c
on

s]
9

9
8

12
10

10
5

8
7

11
[so

n]
10

12
12

9
10

7
9

11
8

11
[c
on

t]
11

8
5

11
12

10
13

3
6

9
[d
elr

el]
25

20
17

23
28

33
28

28
21

30
[a
pp

ro
x]

33
27

29
22

23
35

31
29

2
24

[v
oi
ce
]

7
10

11
9

6
13

6
10

5
11

[la
b]

28
28

31
23

23
26

16
24

17
23

[la
bd

en
t]

19
38

28
27

28
21

34
24

16
21

[c
or
]

14
25

22
18

21
25

22
32

23
25

[a
nt
]

21
16

22
18

27
23

35
27

28
18

[d
ist

r]
29

26
31

19
27

26
21

26
31

24
[st

rid
]

30
33

3
26

25
24

31
20

29
25

[la
t]

23
26

23
26

32
23

33
27

32
31

[d
or
]

24
24

25
32

21
26

35
23

16
28

|M
F
|

18
9
20
6
17
7
17
9
19
6
19
8
19
0
17
4
18
4
18
6

Table 22: Cardinalities |M(Φ, ϕ)| and |MF| for all sufficient features and selected
one for the insufficient feature, across 10 runs, for VN in English.
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Fe
at
ur
es

et
Φ

|M
(Φ

,ϕ
)|

1
2

3
4

5
6

7
8

9
10

[h
igh
]

10
6

15
1

12
7

14
6

14
0

18
4

11
9

17
4

14
5

18
7

[lo
w]

3
8

3
3

27
37

31
3
8

4
0

2
9

2
9

17
[te

ns
e]

14
3

19
9

16
5

17
2

18
3

17
9

9
6

12
0

14
9

18
5

[fr
on

t]
11

3
13

0
19

4
14
1

11
6

15
9

16
1

10
7

15
5

18
8

[b
ac
k]

16
9

17
4

15
7

11
9

18
0

18
7

2
0
0

16
6

14
0

18
1

[ro
un

d]
4
0

2
3

3
8

31
2
4

3
0

3
5

16
3
4

2
8

[lo
ng
]

3
5
4

3
41

3
3
5

2
9
8

2
3
6

2
2
4

3
5
8

3
51

3
3
2

3
4
4

[c
on

s]
3
3

3
2

37
3
3

4
6

4
2

3
5

4
0

27
37

[so
n]

5
2

3
6

4
2

27
4
4

3
2

4
6

3
8

31
4
4

[c
on

t]
3
8

3
9

2
2

3
6

3
3

3
9

2
5

3
8

37
2
9

[d
elr

el]
4
0

2
8

2
4

37
2
9

3
2

2
6

4
6

2
9

4
4

[n
as
al]

41
4
0

2
3

2
4

2
8

3
2

4
6

37
3
3

2
8

[a
pp

ro
x]

4
0

3
2

4
4

5
2

2
8

41
4
4

4
3

3
9

4
2

[v
oi
ce
]

2
4

37
31

4
5

2
6

2
2

51
2
0

3
5

3
6

[la
b]

3
2

3
9

3
2

3
6

3
2

37
3
8

2
8

41
31

[la
bd

en
t]

31
31

37
2
6

41
3
2

3
3

3
8

31
2
9

[c
or
]

15
3

13
2

11
7

12
8

17
9

15
9

97
15

1
15

4
12

4
[a
nt
]

12
8

11
9

13
2

15
2

10
4

15
8

14
8

12
4

13
1

16
6

[d
ist

r]
27

4
5

3
5

2
2

2
5

3
3

27
4
4

3
4

2
4

[st
rid
]

2
6

21
3
5

2
3

3
3

31
3
6

41
3
5

2
3

[la
t]

2
3

3
2

3
5

2
6

2
5

3
3

3
9

3
3

3
3

31
[d
or
]

14
2

14
3

18
1

18
9

16
9

16
8

16
4

16
8

19
9

16
7

[c
on

str
gl]

12
8

14
0

13
7

21
7

13
2

14
5

15
9

19
5

13
3

2
0
0

[sp
re
ad

gl]
9
2
0

9
4
3

9
4
2

9
67

8
6
8

91
0

97
2

9
9
4

9
5
2

10
5
2

|M
F
|

9
2
0

9
4
3

9
4
2

9
67

8
6
8

91
0

97
2

9
9
4

9
5
2

10
5
2

Table 23: Cardinalities |M(Φ, ϕ)| and |MF| for all sufficient features, across 10
runs, for VS in Yawelmani.
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41
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[fr
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3

17
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14
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20
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14
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19
3

18
6

11
4
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0
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8

17
4

16
0

20
4

13
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15
2

19
4

15
7
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2
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4
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17
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]

28
34
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29

30
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32

37
34
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s]
37

33
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28
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32
32

32
19

36
[s

on lo
w
]

22
3

25
9
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3

25
3

27
3

28
3

28
3

27
1

26
7

28
7

[
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]
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7

31
5

31
7

32
3

31
7

29
3

31
3

30
7

27
5

32
3

� delre
l

lo
n
g

�
10
23

93
3

87
3
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3

86
3

85
3

91
3
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3
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3

10
03
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x]

26
32

38
45

28
27
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38

39
32

� nasal so
n

�
27
7

29
8

28
3

26
7

29
7

33
1

28
1

28
5

29
3

28
5

� voice co
n
s

�
27
7

31
9

25
9

31
1

29
5

31
7

32
3

32
1

31
1

31
3

[la
b]

31
5

31
1

32
3

31
1

32
1

31
7
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F
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2,3
80
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2,3
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2,3
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2,3
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2,3
65

2,2
38

2,3
56

Table 24: Cardinalities |M(Φ, ϕ)| and |MF| for all sufficient features and selected
one for each insufficient feature, across 10 runs, for FE in Chukchi.
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33
3

46
30

47
31

3
34
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7,3
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20

5,5
00
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40
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8,1
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6,3
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8,1
40

6,9
00
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14
4

16
3
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0

16
1

17
8

4
12
6

17
2
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6
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4

|M
F
|

8,1
85

8,3
71

8,3
21

7,6
69

8,2
63

8,3
50

8,3
36

8,3
33

8,3
19

8,2
00

Table 25: Cardinalities |M(Φ, ϕ)| and |MF| for all sufficient features and selected
one for each insufficient feature, across 10 runs, for FD and OR in Polish.
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Feature set Φ |Σ| = 8 |Σ| = 9 |Σ| = 10

|S(Φ,ϕ)| |M(Φ,ϕ)| |S(Φ,ϕ)| |M(Φ,ϕ)| |S(Φ,ϕ)| |M(Φ,ϕ)|� voice
son

�
363 241 363 223 363 235

[son] 62 32 62 34 62 23
[cons] 62 38 62 41 62 31
[cont] 62 40 62 27 62 33
[cor] 62 7 62 34 336 4
[ant] 363 4 363 114 363 135
[dor] 62 33 62 3 62 43
[lab] 62 47 62 41 336 4
[distr] 62 34 62 25 62 29
[delrel] 363 141 363 4 363 5
[nasal] 62 43 62 29 62 43
[lat] 62 32 62 28 62 39� high
voice
son
low

�
8,446 7,416 17,892 13,122 17,892 8,122

[back] 62 24 62 32 62 37
[low] 336 192 336 119 336 182� tense

voice
son

round

�
8,446 6,656 17,892 12,482 17,892 17,843

[round] 336 162 336 136 336 153

|MF | 33,352 8,283 59,868 16,272 101,110 17,945

Table 26: Cardinalities |S(Φ, ϕ)| and |M(Φ, ϕ)| for all sufficient features and
selected one for each insufficient feature, for Σ with 8, 9 and 10 phonemes, for

FD and OR in Polish.
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CCARDINALITIES OF ALL |S(Φ, ϕ)| FOR
THE insufficient FEATURES

Φ |S(Φ, ϕ)|� nasal
cons

�
39� nasal

approx

�
155� nasal

lat

�
155� nasal

lab

�
155� nasal

labdent

�
84� nasal

cor

�
155� nasal

dor

�
155� nasal

front

�
84� nasal

back

�
84� nasal

long

�
39

Table 27: Cardinality |S(Φ, nasal)| for Φ combinations with the insufficient
feature [nasal] and various features in English.
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Table 28: Cardinalities |S(Φ, ϕ)| for all Φ combinations with insufficient
features [round], [son], [cont], [delrel], and [nasal] and various features in

Chukchi.
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Table 29: Cardinalities |S(Φ, ϕ)| for all Φ combinations with insufficient
features [voice], [ant], [distr], and [strid] and various features in Chukchi.
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Φ Cardinality� voice
son

�
336� voice

delrel

�
1172� high

voiceson
round

�
8250� high

voice
son
low

�
8250� tense

voice
son
low

�
8250� tense

voice
son

round

�
8250

Table 30: Cardinalities |S(Φ, ϕ)| for all Φ combinations with insufficient
features [voice], [high], [tense] and various features in Polish.
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